MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Unicode version

Theorem lo1bddrp 12311
Description: Refine o1bdd2 12327 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1  |-  ( ph  ->  A  C_  RR )
lo1bdd2.2  |-  ( ph  ->  C  e.  RR )
lo1bdd2.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
lo1bdd2.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
lo1bdd2.5  |-  ( (
ph  /\  ( y  e.  RR  /\  C  <_ 
y ) )  ->  M  e.  RR )
lo1bdd2.6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
( y  e.  RR  /\  C  <_  y )  /\  x  <  y ) )  ->  B  <_  M )
Assertion
Ref Expression
lo1bddrp  |-  ( ph  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m )
Distinct variable groups:    x, m, y, A    B, m, y   
x, C, y    ph, x, y    m, M, x
Allowed substitution hints:    ph( m)    B( x)    C( m)    M( y)

Proof of Theorem lo1bddrp
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3  |-  ( ph  ->  A  C_  RR )
2 lo1bdd2.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 lo1bdd2.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 lo1bdd2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
5 lo1bdd2.5 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  C  <_ 
y ) )  ->  M  e.  RR )
6 lo1bdd2.6 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  (
( y  e.  RR  /\  C  <_  y )  /\  x  <  y ) )  ->  B  <_  M )
71, 2, 3, 4, 5, 6lo1bdd2 12310 . 2  |-  ( ph  ->  E. n  e.  RR  A. x  e.  A  B  <_  n )
8 simpr 448 . . . . . . 7  |-  ( (
ph  /\  n  e.  RR )  ->  n  e.  RR )
98recnd 9106 . . . . . 6  |-  ( (
ph  /\  n  e.  RR )  ->  n  e.  CC )
109abscld 12230 . . . . 5  |-  ( (
ph  /\  n  e.  RR )  ->  ( abs `  n )  e.  RR )
119absge0d 12238 . . . . 5  |-  ( (
ph  /\  n  e.  RR )  ->  0  <_ 
( abs `  n
) )
1210, 11ge0p1rpd 10666 . . . 4  |-  ( (
ph  /\  n  e.  RR )  ->  ( ( abs `  n )  +  1 )  e.  RR+ )
13 simplr 732 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  e.  RR )
1410adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( abs `  n )  e.  RR )
15 peano2re 9231 . . . . . . . 8  |-  ( ( abs `  n )  e.  RR  ->  (
( abs `  n
)  +  1 )  e.  RR )
1614, 15syl 16 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
( abs `  n
)  +  1 )  e.  RR )
1713leabsd 12209 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  <_  ( abs `  n
) )
1814lep1d 9934 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( abs `  n )  <_ 
( ( abs `  n
)  +  1 ) )
1913, 14, 16, 17, 18letrd 9219 . . . . . 6  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  <_  ( ( abs `  n
)  +  1 ) )
203adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  B  e.  RR )
21 letr 9159 . . . . . . 7  |-  ( ( B  e.  RR  /\  n  e.  RR  /\  (
( abs `  n
)  +  1 )  e.  RR )  -> 
( ( B  <_  n  /\  n  <_  (
( abs `  n
)  +  1 ) )  ->  B  <_  ( ( abs `  n
)  +  1 ) ) )
2220, 13, 16, 21syl3anc 1184 . . . . . 6  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
( B  <_  n  /\  n  <_  ( ( abs `  n )  +  1 ) )  ->  B  <_  (
( abs `  n
)  +  1 ) ) )
2319, 22mpan2d 656 . . . . 5  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( B  <_  n  ->  B  <_  ( ( abs `  n
)  +  1 ) ) )
2423ralimdva 2776 . . . 4  |-  ( (
ph  /\  n  e.  RR )  ->  ( A. x  e.  A  B  <_  n  ->  A. x  e.  A  B  <_  ( ( abs `  n
)  +  1 ) ) )
25 breq2 4208 . . . . . 6  |-  ( m  =  ( ( abs `  n )  +  1 )  ->  ( B  <_  m  <->  B  <_  ( ( abs `  n )  +  1 ) ) )
2625ralbidv 2717 . . . . 5  |-  ( m  =  ( ( abs `  n )  +  1 )  ->  ( A. x  e.  A  B  <_  m  <->  A. x  e.  A  B  <_  ( ( abs `  n )  +  1 ) ) )
2726rspcev 3044 . . . 4  |-  ( ( ( ( abs `  n
)  +  1 )  e.  RR+  /\  A. x  e.  A  B  <_  ( ( abs `  n
)  +  1 ) )  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m
)
2812, 24, 27ee12an 1372 . . 3  |-  ( (
ph  /\  n  e.  RR )  ->  ( A. x  e.  A  B  <_  n  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m
) )
2928rexlimdva 2822 . 2  |-  ( ph  ->  ( E. n  e.  RR  A. x  e.  A  B  <_  n  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m ) )
307, 29mpd 15 1  |-  ( ph  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8981   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113   RR+crp 10604   abscabs 12031   <_ O ( 1 )clo1 12273
This theorem is referenced by:  o1bddrp  12328  chpo1ubb  21167  pntrlog2bnd  21270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-lo1 12277
  Copyright terms: Public domain W3C validator