MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Unicode version

Theorem lo1mul 12117
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
lo1add.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
lo1add.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
lo1mul.5  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
lo1mul  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  <_ O ( 1 ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1mul
Dummy variables  m  c  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
2 lo1add.4 . 2  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
3 reeanv 2720 . . . 4  |-  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )  <-> 
( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) )
4 o1add2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2639 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5186 . . . . . . . . . 10  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 15 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
8 lo1dm 12009 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  <_ O
( 1 )  ->  dom  ( x  e.  A  |->  B )  C_  RR )
91, 8syl 15 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
107, 9eqsstr3d 3226 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1110adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  A  C_  RR )
12 rexanre 11846 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  <-> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
1311, 12syl 15 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
14 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  m  e.  RR )
15 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  n  e.  RR )
16 0re 8854 . . . . . . . . . 10  |-  0  e.  RR
17 ifcl 3614 . . . . . . . . . 10  |-  ( ( n  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  n ,  n , 
0 )  e.  RR )
1815, 16, 17sylancl 643 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  if ( 0  <_  n ,  n ,  0 )  e.  RR )
1914, 18remulcld 8879 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( m  x.  if ( 0  <_  n ,  n ,  0 ) )  e.  RR )
20 simplrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  n  e.  RR )
21 max2 10532 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  n  e.  RR )  ->  n  <_  if (
0  <_  n ,  n ,  0 ) )
2216, 20, 21sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  n  <_  if ( 0  <_  n ,  n , 
0 ) )
23 o1add2.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
2423, 2lo1mptrcl 12111 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
2524adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  C  e.  RR )
2620, 16, 17sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  if ( 0  <_  n ,  n ,  0 )  e.  RR )
27 letr 8930 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  n  e.  RR  /\  if ( 0  <_  n ,  n ,  0 )  e.  RR )  -> 
( ( C  <_  n  /\  n  <_  if ( 0  <_  n ,  n ,  0 ) )  ->  C  <_  if ( 0  <_  n ,  n ,  0 ) ) )
2825, 20, 26, 27syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( C  <_  n  /\  n  <_  if ( 0  <_  n ,  n ,  0 ) )  ->  C  <_  if ( 0  <_  n ,  n ,  0 ) ) )
2922, 28mpan2d 655 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  ( C  <_  n  ->  C  <_  if ( 0  <_  n ,  n , 
0 ) ) )
304, 1lo1mptrcl 12111 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
3130adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  B  e.  RR )
32 lo1mul.5 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
3332adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  0  <_  B )
3431, 33jca 518 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
35 simplrl 736 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  m  e.  RR )
36 max1 10530 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  n  e.  RR )  ->  0  <_  if (
0  <_  n ,  n ,  0 ) )
3716, 20, 36sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  0  <_  if ( 0  <_  n ,  n , 
0 ) )
3826, 37jca 518 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  ( if ( 0  <_  n ,  n ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  n ,  n , 
0 ) ) )
39 lemul12b 9629 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  RR  /\  0  <_  B )  /\  m  e.  RR )  /\  ( C  e.  RR  /\  ( if ( 0  <_  n ,  n ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  n ,  n , 
0 ) ) ) )  ->  ( ( B  <_  m  /\  C  <_  if ( 0  <_  n ,  n , 
0 ) )  -> 
( B  x.  C
)  <_  ( m  x.  if ( 0  <_  n ,  n , 
0 ) ) ) )
4034, 35, 25, 38, 39syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( B  <_  m  /\  C  <_  if ( 0  <_  n ,  n ,  0 ) )  ->  ( B  x.  C )  <_  (
m  x.  if ( 0  <_  n ,  n ,  0 ) ) ) )
4129, 40sylan2d 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( B  <_  m  /\  C  <_  n )  ->  ( B  x.  C )  <_  (
m  x.  if ( 0  <_  n ,  n ,  0 ) ) ) )
4241imim2d 48 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  ->  ( c  <_  x  ->  ( B  x.  C )  <_  (
m  x.  if ( 0  <_  n ,  n ,  0 ) ) ) ) )
4342ralimdva 2634 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  (
m  x.  if ( 0  <_  n ,  n ,  0 ) ) ) ) )
44 breq2 4043 . . . . . . . . . . 11  |-  ( p  =  ( m  x.  if ( 0  <_  n ,  n , 
0 ) )  -> 
( ( B  x.  C )  <_  p  <->  ( B  x.  C )  <_  ( m  x.  if ( 0  <_  n ,  n , 
0 ) ) ) )
4544imbi2d 307 . . . . . . . . . 10  |-  ( p  =  ( m  x.  if ( 0  <_  n ,  n , 
0 ) )  -> 
( ( c  <_  x  ->  ( B  x.  C )  <_  p
)  <->  ( c  <_  x  ->  ( B  x.  C )  <_  (
m  x.  if ( 0  <_  n ,  n ,  0 ) ) ) ) )
4645ralbidv 2576 . . . . . . . . 9  |-  ( p  =  ( m  x.  if ( 0  <_  n ,  n , 
0 ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
)  <->  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C
)  <_  ( m  x.  if ( 0  <_  n ,  n , 
0 ) ) ) ) )
4746rspcev 2897 . . . . . . . 8  |-  ( ( ( m  x.  if ( 0  <_  n ,  n ,  0 ) )  e.  RR  /\  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  ( m  x.  if ( 0  <_  n ,  n , 
0 ) ) ) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) )
4819, 43, 47ee12an 1353 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) ) )
4948reximdv 2667 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) ) )
5013, 49sylbird 226 . . . . 5  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) ) )
5150rexlimdvva 2687 . . . 4  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) ) )
523, 51syl5bir 209 . . 3  |-  ( ph  ->  ( ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  x.  C )  <_  p
) ) )
5310, 30ello1mpt 12011 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. m  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
54 rexcom 2714 . . . . 5  |-  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) )
5553, 54syl6bb 252 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
5610, 24ello1mpt 12011 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
57 rexcom 2714 . . . . 5  |-  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )
5856, 57syl6bb 252 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_ O ( 1 )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
5955, 58anbi12d 691 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  /\  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )  <->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
6030, 24remulcld 8879 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  e.  RR )
6110, 60ello1mpt 12011 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  x.  C ) )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  x.  C )  <_  p ) ) )
6252, 59, 613imtr4d 259 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  /\  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )  ->  (
x  e.  A  |->  ( B  x.  C ) )  e.  <_ O
( 1 ) ) )
631, 2, 62mp2and 660 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  e.  <_ O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   ifcif 3578   class class class wbr 4039    e. cmpt 4093   dom cdm 4705  (class class class)co 5874   RRcr 8752   0cc0 8753    x. cmul 8758    <_ cle 8884   <_ O ( 1 )clo1 11977
This theorem is referenced by:  lo1mul2  12118  pntrlog2bndlem4  20745  pntrlog2bndlem5  20746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-ico 10678  df-lo1 11981
  Copyright terms: Public domain W3C validator