MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res2 Structured version   Unicode version

Theorem lo1res2 12387
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rlimres2.1  |-  ( ph  ->  A  C_  B )
lo1res2.2  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  <_ O ( 1 ) )
Assertion
Ref Expression
lo1res2  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem lo1res2
StepHypRef Expression
1 rlimres2.1 . . 3  |-  ( ph  ->  A  C_  B )
2 resmpt 5220 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
31, 2syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
4 lo1res2.2 . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  <_ O ( 1 ) )
5 lo1res 12384 . . 3  |-  ( ( x  e.  B  |->  C )  e.  <_ O
( 1 )  -> 
( ( x  e.  B  |->  C )  |`  A )  e.  <_ O ( 1 ) )
64, 5syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  e.  <_ O ( 1 ) )
73, 6eqeltrrd 2517 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727    C_ wss 3306    e. cmpt 4291    |` cres 4909   <_ O ( 1 )clo1 12312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-pre-lttri 9095  ax-pre-lttrn 9096
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-er 6934  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-ico 10953  df-lo1 12316
  Copyright terms: Public domain W3C validator