Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfincf Structured version   Unicode version

Theorem locfincf 26340
 Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1
Assertion
Ref Expression
locfincf TopOn

Proof of Theorem locfincf
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 16981 . . . . 5 TopOn
21ad2antrr 707 . . . 4 TopOn
3 toponuni 16982 . . . . . 6 TopOn
43ad2antrr 707 . . . . 5 TopOn
5 locfincf.1 . . . . . . 7
6 eqid 2435 . . . . . . 7
75, 6locfinbas 26335 . . . . . 6
87adantl 453 . . . . 5 TopOn
94, 8eqtr3d 2469 . . . 4 TopOn
104eleq2d 2502 . . . . . 6 TopOn
115locfinnei 26336 . . . . . . . 8
1211ex 424 . . . . . . 7
13 ssrexv 3400 . . . . . . . 8
1413adantl 453 . . . . . . 7 TopOn
1512, 14sylan9r 640 . . . . . 6 TopOn
1610, 15sylbird 227 . . . . 5 TopOn
1716ralrimiv 2780 . . . 4 TopOn
18 eqid 2435 . . . . 5
1918, 6islocfin 26330 . . . 4
202, 9, 17, 19syl3anbrc 1138 . . 3 TopOn
2120ex 424 . 2 TopOn
2221ssrdv 3346 1 TopOn
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725   wne 2598  wral 2697  wrex 2698  crab 2701   cin 3311   wss 3312  c0 3620  cuni 4007  cfv 5446  cfn 7101  ctop 16948  TopOnctopon 16949  clocfin 26296 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fv 5454  df-top 16953  df-topon 16956  df-locfin 26300
 Copyright terms: Public domain W3C validator