Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfincmp Structured version   Unicode version

Theorem locfincmp 26384
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1  |-  X  = 
U. J
locfincmp.2  |-  Y  = 
U. C
Assertion
Ref Expression
locfincmp  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )

Proof of Theorem locfincmp
Dummy variables  o 
c  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10  |-  X  = 
U. J
21locfinnei 26382 . . . . . . . . 9  |-  ( ( C  e.  ( LocFin `  J )  /\  x  e.  X )  ->  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
32ralrimiva 2789 . . . . . . . 8  |-  ( C  e.  ( LocFin `  J
)  ->  A. x  e.  X  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
41cmpcov2 17453 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. o  e.  J  (
x  e.  o  /\  { s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
53, 4sylan2 461 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
6 elfpw 7408 . . . . . . . . 9  |-  ( c  e.  ( ~P J  i^i  Fin )  <->  ( c  C_  J  /\  c  e. 
Fin ) )
7 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
c  e.  Fin )
8 eldifsn 3927 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  \  { (/) } )  <->  ( x  e.  C  /\  x  =/=  (/) ) )
9 elunii 4020 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
10 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Y  = 
U. C
119, 10syl6eleqr 2527 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  Y )
1211ancoms 440 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  C  /\  y  e.  x )  ->  y  e.  Y )
1312adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  Y )
141, 10locfinbas 26381 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( C  e.  ( LocFin `  J
)  ->  X  =  Y )
1514adantl 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  X  =  Y )
1615ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  Y )
1713, 16eleqtrrd 2513 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  X )
18 simplr 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  U. c
)
1917, 18eleqtrd 2512 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  U. c
)
20 eluni2 4019 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  U. c  <->  E. o  e.  c  y  e.  o )
2119, 20sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c 
y  e.  o )
22 simplrl 737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  C )
23 simplrr 738 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  x )
24 simprr 734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  o )
25 inelcm 3682 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  x  /\  y  e.  o )  ->  ( x  i^i  o
)  =/=  (/) )
2623, 24, 25syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  (
x  i^i  o )  =/=  (/) )
27 ineq1 3535 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( s  =  x  ->  (
s  i^i  o )  =  ( x  i^i  o ) )
2827neeq1d 2614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  x  ->  (
( s  i^i  o
)  =/=  (/)  <->  ( x  i^i  o )  =/=  (/) ) )
2928elrab 3092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  ( x  e.  C  /\  ( x  i^i  o )  =/=  (/) ) )
3022, 26, 29sylanbrc 646 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3130expr 599 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  o  e.  c )  ->  ( y  e.  o  ->  x  e.  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
3231reximdva 2818 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
( E. o  e.  c  y  e.  o  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3321, 32mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
3433expr 599 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } ) )
3534exlimdv 1646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  ( E. y  y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
36 n0 3637 . . . . . . . . . . . . . . 15  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
37 eliun 4097 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3835, 36, 373imtr4g 262 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
x  =/=  (/)  ->  x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3938expimpd 587 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( ( x  e.  C  /\  x  =/=  (/) )  ->  x  e. 
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
408, 39syl5bi 209 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( x  e.  ( C  \  { (/) } )  ->  x  e.  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
4140ssrdv 3354 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( C  \  { (/)
} )  C_  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
42 iunfi 7394 . . . . . . . . . . . . 13  |-  ( ( c  e.  Fin  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) }  e.  Fin )
4342ex 424 . . . . . . . . . . . 12  |-  ( c  e.  Fin  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
44 ssfi 7329 . . . . . . . . . . . . 13  |-  ( (
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } )  ->  ( C  \  { (/) } )  e. 
Fin )
4544expcom 425 . . . . . . . . . . . 12  |-  ( ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  ->  ( U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
4643, 45sylan9 639 . . . . . . . . . . 11  |-  ( ( c  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
477, 41, 46syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e.  Fin )
)
4847expimpd 587 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  ->  (
( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C  \  { (/)
} )  e.  Fin ) )
496, 48sylan2b 462 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  c  e.  ( ~P J  i^i  Fin ) )  ->  ( ( X  =  U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
5049rexlimdva 2830 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( E. c  e.  ( ~P J  i^i  Fin ) ( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
515, 50mpd 15 . . . . . 6  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  \  { (/) } )  e. 
Fin )
52 snfi 7187 . . . . . 6  |-  { (/) }  e.  Fin
53 unfi 7374 . . . . . 6  |-  ( ( ( C  \  { (/)
} )  e.  Fin  /\ 
{ (/) }  e.  Fin )  ->  ( ( C 
\  { (/) } )  u.  { (/) } )  e.  Fin )
5451, 52, 53sylancl 644 . . . . 5  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( ( C  \  { (/) } )  u.  { (/) } )  e.  Fin )
55 ssun1 3510 . . . . . 6  |-  C  C_  ( C  u.  { (/) } )
56 undif1 3703 . . . . . 6  |-  ( ( C  \  { (/) } )  u.  { (/) } )  =  ( C  u.  { (/) } )
5755, 56sseqtr4i 3381 . . . . 5  |-  C  C_  ( ( C  \  { (/) } )  u. 
{ (/) } )
58 ssfi 7329 . . . . 5  |-  ( ( ( ( C  \  { (/) } )  u. 
{ (/) } )  e. 
Fin  /\  C  C_  (
( C  \  { (/)
} )  u.  { (/)
} ) )  ->  C  e.  Fin )
5954, 57, 58sylancl 644 . . . 4  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  C  e.  Fin )
6059, 15jca 519 . . 3  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  e.  Fin  /\  X  =  Y ) )
6160ex 424 . 2  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  ->  ( C  e.  Fin  /\  X  =  Y ) ) )
62 cmptop 17458 . . 3  |-  ( J  e.  Comp  ->  J  e. 
Top )
631, 10finlocfin 26379 . . . 4  |-  ( ( J  e.  Top  /\  C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J )
)
64633expib 1156 . . 3  |-  ( J  e.  Top  ->  (
( C  e.  Fin  /\  X  =  Y )  ->  C  e.  (
LocFin `  J ) ) )
6562, 64syl 16 . 2  |-  ( J  e.  Comp  ->  ( ( C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J ) ) )
6661, 65impbid 184 1  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   {crab 2709    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814   U.cuni 4015   U_ciun 4093   ` cfv 5454   Fincfn 7109   Topctop 16958   Compccmp 17449   LocFinclocfin 26342
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-fin 7113  df-top 16963  df-cmp 17450  df-locfin 26346
  Copyright terms: Public domain W3C validator