Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfincmp Unicode version

Theorem locfincmp 26407
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1  |-  X  = 
U. J
locfincmp.2  |-  Y  = 
U. C
Assertion
Ref Expression
locfincmp  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )

Proof of Theorem locfincmp
Dummy variables  o 
c  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10  |-  X  = 
U. J
21locfinnei 26405 . . . . . . . . 9  |-  ( ( C  e.  ( LocFin `  J )  /\  x  e.  X )  ->  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
32ralrimiva 2639 . . . . . . . 8  |-  ( C  e.  ( LocFin `  J
)  ->  A. x  e.  X  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
41cmpcov2 17133 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. o  e.  J  (
x  e.  o  /\  { s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
53, 4sylan2 460 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
6 elfpw 7173 . . . . . . . . 9  |-  ( c  e.  ( ~P J  i^i  Fin )  <->  ( c  C_  J  /\  c  e. 
Fin ) )
7 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
c  e.  Fin )
8 eldifsn 3762 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  \  { (/) } )  <->  ( x  e.  C  /\  x  =/=  (/) ) )
9 elunii 3848 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
10 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Y  = 
U. C
119, 10syl6eleqr 2387 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  Y )
1211ancoms 439 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  C  /\  y  e.  x )  ->  y  e.  Y )
1312adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  Y )
141, 10locfinbas 26404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( C  e.  ( LocFin `  J
)  ->  X  =  Y )
1514adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  X  =  Y )
1615ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  Y )
1713, 16eleqtrrd 2373 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  X )
18 simplr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  U. c
)
1917, 18eleqtrd 2372 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  U. c
)
20 eluni2 3847 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  U. c  <->  E. o  e.  c  y  e.  o )
2119, 20sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c 
y  e.  o )
22 simplrl 736 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  C )
23 simplrr 737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  x )
24 simprr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  o )
25 inelcm 3522 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  x  /\  y  e.  o )  ->  ( x  i^i  o
)  =/=  (/) )
2623, 24, 25syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  (
x  i^i  o )  =/=  (/) )
27 ineq1 3376 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( s  =  x  ->  (
s  i^i  o )  =  ( x  i^i  o ) )
2827neeq1d 2472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  x  ->  (
( s  i^i  o
)  =/=  (/)  <->  ( x  i^i  o )  =/=  (/) ) )
2928elrab 2936 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  ( x  e.  C  /\  ( x  i^i  o )  =/=  (/) ) )
3022, 26, 29sylanbrc 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3130expr 598 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  o  e.  c )  ->  ( y  e.  o  ->  x  e.  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
3231reximdva 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
( E. o  e.  c  y  e.  o  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3321, 32mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
3433expr 598 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } ) )
3534exlimdv 1626 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  ( E. y  y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
36 n0 3477 . . . . . . . . . . . . . . 15  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
37 eliun 3925 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3835, 36, 373imtr4g 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
x  =/=  (/)  ->  x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3938expimpd 586 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( ( x  e.  C  /\  x  =/=  (/) )  ->  x  e. 
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
408, 39syl5bi 208 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( x  e.  ( C  \  { (/) } )  ->  x  e.  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
4140ssrdv 3198 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( C  \  { (/)
} )  C_  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
42 iunfi 7160 . . . . . . . . . . . . 13  |-  ( ( c  e.  Fin  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) }  e.  Fin )
4342ex 423 . . . . . . . . . . . 12  |-  ( c  e.  Fin  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
44 ssfi 7099 . . . . . . . . . . . . 13  |-  ( (
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } )  ->  ( C  \  { (/) } )  e. 
Fin )
4544expcom 424 . . . . . . . . . . . 12  |-  ( ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  ->  ( U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
4643, 45sylan9 638 . . . . . . . . . . 11  |-  ( ( c  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
477, 41, 46syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e.  Fin )
)
4847expimpd 586 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  ->  (
( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C  \  { (/)
} )  e.  Fin ) )
496, 48sylan2b 461 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  c  e.  ( ~P J  i^i  Fin ) )  ->  ( ( X  =  U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
5049rexlimdva 2680 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( E. c  e.  ( ~P J  i^i  Fin ) ( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
515, 50mpd 14 . . . . . 6  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  \  { (/) } )  e. 
Fin )
52 snfi 6957 . . . . . 6  |-  { (/) }  e.  Fin
53 unfi 7140 . . . . . 6  |-  ( ( ( C  \  { (/)
} )  e.  Fin  /\ 
{ (/) }  e.  Fin )  ->  ( ( C 
\  { (/) } )  u.  { (/) } )  e.  Fin )
5451, 52, 53sylancl 643 . . . . 5  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( ( C  \  { (/) } )  u.  { (/) } )  e.  Fin )
55 ssun1 3351 . . . . . 6  |-  C  C_  ( C  u.  { (/) } )
56 undif1 3542 . . . . . 6  |-  ( ( C  \  { (/) } )  u.  { (/) } )  =  ( C  u.  { (/) } )
5755, 56sseqtr4i 3224 . . . . 5  |-  C  C_  ( ( C  \  { (/) } )  u. 
{ (/) } )
58 ssfi 7099 . . . . 5  |-  ( ( ( ( C  \  { (/) } )  u. 
{ (/) } )  e. 
Fin  /\  C  C_  (
( C  \  { (/)
} )  u.  { (/)
} ) )  ->  C  e.  Fin )
5954, 57, 58sylancl 643 . . . 4  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  C  e.  Fin )
6059, 15jca 518 . . 3  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  e.  Fin  /\  X  =  Y ) )
6160ex 423 . 2  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  ->  ( C  e.  Fin  /\  X  =  Y ) ) )
62 cmptop 17138 . . 3  |-  ( J  e.  Comp  ->  J  e. 
Top )
631, 10finlocfin 26402 . . . 4  |-  ( ( J  e.  Top  /\  C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J )
)
64633expib 1154 . . 3  |-  ( J  e.  Top  ->  (
( C  e.  Fin  /\  X  =  Y )  ->  C  e.  (
LocFin `  J ) ) )
6562, 64syl 15 . 2  |-  ( J  e.  Comp  ->  ( ( C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J ) ) )
6661, 65impbid 183 1  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   U.cuni 3843   U_ciun 3921   ` cfv 5271   Fincfn 6879   Topctop 16647   Compccmp 17129   LocFinclocfin 26365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-top 16652  df-cmp 17130  df-locfin 26369
  Copyright terms: Public domain W3C validator