MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Unicode version

Theorem log2cnv 20741
Description: Using the Taylor series for arctan ( _i  / 
3 ), produce a rapidly convergent series for  log 2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
Assertion
Ref Expression
log2cnv  |-  seq  0
(  +  ,  F
)  ~~>  ( log `  2
)

Proof of Theorem log2cnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10480 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10253 . . . . 5  |-  0  e.  ZZ
32a1i 11 . . . 4  |-  (  T. 
->  0  e.  ZZ )
4 2cn 10030 . . . . . 6  |-  2  e.  CC
5 ax-icn 9009 . . . . . 6  |-  _i  e.  CC
6 ine0 9429 . . . . . 6  |-  _i  =/=  0
74, 5, 6divcli 9716 . . . . 5  |-  ( 2  /  _i )  e.  CC
87a1i 11 . . . 4  |-  (  T. 
->  ( 2  /  _i )  e.  CC )
9 3cn 10032 . . . . . . 7  |-  3  e.  CC
10 3ne0 10045 . . . . . . 7  |-  3  =/=  0
115, 9, 10divcli 9716 . . . . . 6  |-  ( _i 
/  3 )  e.  CC
12 absdiv 12059 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  ( abs `  ( _i  / 
3 ) )  =  ( ( abs `  _i )  /  ( abs `  3
) ) )
135, 9, 10, 12mp3an 1279 . . . . . . . 8  |-  ( abs `  ( _i  /  3
) )  =  ( ( abs `  _i )  /  ( abs `  3
) )
14 absi 12050 . . . . . . . . 9  |-  ( abs `  _i )  =  1
15 3re 10031 . . . . . . . . . 10  |-  3  e.  RR
16 0re 9051 . . . . . . . . . . 11  |-  0  e.  RR
17 3pos 10044 . . . . . . . . . . 11  |-  0  <  3
1816, 15, 17ltleii 9156 . . . . . . . . . 10  |-  0  <_  3
19 absid 12060 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( abs `  3
)  =  3 )
2015, 18, 19mp2an 654 . . . . . . . . 9  |-  ( abs `  3 )  =  3
2114, 20oveq12i 6056 . . . . . . . 8  |-  ( ( abs `  _i )  /  ( abs `  3
) )  =  ( 1  /  3 )
2213, 21eqtri 2428 . . . . . . 7  |-  ( abs `  ( _i  /  3
) )  =  ( 1  /  3 )
23 1lt3 10104 . . . . . . . 8  |-  1  <  3
24 recgt1 9866 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <  3 )  -> 
( 1  <  3  <->  ( 1  /  3 )  <  1 ) )
2515, 17, 24mp2an 654 . . . . . . . 8  |-  ( 1  <  3  <->  ( 1  /  3 )  <  1 )
2623, 25mpbi 200 . . . . . . 7  |-  ( 1  /  3 )  <  1
2722, 26eqbrtri 4195 . . . . . 6  |-  ( abs `  ( _i  /  3
) )  <  1
28 eqid 2408 . . . . . . 7  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )
2928atantayl3 20736 . . . . . 6  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
3011, 27, 29mp2an 654 . . . . 5  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3
) )
3130a1i 11 . . . 4  |-  (  T. 
->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
32 oveq2 6052 . . . . . . . . 9  |-  ( n  =  k  ->  ( -u 1 ^ n )  =  ( -u 1 ^ k ) )
33 oveq2 6052 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
3433oveq1d 6059 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
3534oveq2d 6060 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( _i 
/  3 ) ^
( ( 2  x.  k )  +  1 ) ) )
3635, 34oveq12d 6062 . . . . . . . . 9  |-  ( n  =  k  ->  (
( ( _i  / 
3 ) ^ (
( 2  x.  n
)  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) )  =  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )
3732, 36oveq12d 6062 . . . . . . . 8  |-  ( n  =  k  ->  (
( -u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
38 ovex 6069 . . . . . . . 8  |-  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  e.  _V
3937, 28, 38fvmpt 5769 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
405a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  _i  e.  CC )
419a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  e.  CC )
4210a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  =/=  0 )
43 2nn0 10198 . . . . . . . . . . . . . 14  |-  2  e.  NN0
44 nn0mulcl 10216 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN0  /\  k  e.  NN0 )  -> 
( 2  x.  k
)  e.  NN0 )
4543, 44mpan 652 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e. 
NN0 )
46 peano2nn0 10220 . . . . . . . . . . . . 13  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4745, 46syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4840, 41, 42, 47expdivd 11496 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( ( 2  x.  k )  +  1 ) )  /  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
4948oveq2d 6060 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
50 neg1cn 10027 . . . . . . . . . . . 12  |-  -u 1  e.  CC
51 expcl 11358 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( -u 1 ^ k )  e.  CC )
5250, 51mpan 652 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( -u
1 ^ k )  e.  CC )
53 expcl 11358 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
545, 47, 53sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
55 3nn 10094 . . . . . . . . . . . . 13  |-  3  e.  NN
56 nnexpcl 11353 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  e.  NN )
5755, 47, 56sylancr 645 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  NN )
5857nncnd 9976 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
5957nnne0d 10004 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =/=  0 )
6052, 54, 58, 59divassd 9785 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
61 expp1 11347 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( _i ^ ( 2  x.  k ) )  x.  _i ) )
625, 45, 61sylancr 645 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( 2  x.  k
) )  x.  _i ) )
63 expmul 11384 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
_i ^ ( 2  x.  k ) )  =  ( ( _i
^ 2 ) ^
k ) )
645, 43, 63mp3an12 1269 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( ( _i ^
2 ) ^ k
) )
65 i2 11440 . . . . . . . . . . . . . . . . 17  |-  ( _i
^ 2 )  = 
-u 1
6665oveq1i 6054 . . . . . . . . . . . . . . . 16  |-  ( ( _i ^ 2 ) ^ k )  =  ( -u 1 ^ k )
6764, 66syl6eq 2456 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( -u 1 ^ k ) )
6867oveq1d 6059 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( _i ^ ( 2  x.  k ) )  x.  _i )  =  ( ( -u 1 ^ k )  x.  _i ) )
6962, 68eqtrd 2440 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( -u 1 ^ k )  x.  _i ) )
7069oveq2d 6060 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7152, 52, 40mulassd 9071 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7250a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  -u 1  e.  CC )
73 id 20 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
7472, 73, 73expaddd 11484 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  ( ( -u
1 ^ k )  x.  ( -u 1 ^ k ) ) )
75 expmul 11384 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  -> 
( -u 1 ^ (
2  x.  k ) )  =  ( (
-u 1 ^ 2 ) ^ k ) )
7650, 43, 75mp3an12 1269 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( ( -u
1 ^ 2 ) ^ k ) )
77 ax-1cn 9008 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
78 sqneg 11401 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
7977, 78ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
80 sq1 11435 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ^ 2 )  =  1
8179, 80eqtri 2428 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1 ^ 2 )  =  1
8281oveq1i 6054 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1 ^ 2 ) ^ k )  =  ( 1 ^ k )
8376, 82syl6eq 2456 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( 1 ^ k ) )
84 nn0cn 10191 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  k  e.  CC )
85842timesd 10170 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( 2  x.  k )  =  ( k  +  k ) )
8685oveq2d 6060 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( -u 1 ^ ( k  +  k ) ) )
87 nn0z 10264 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
88 1exp 11368 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
8987, 88syl 16 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 1 ^ k )  =  1 )
9083, 86, 893eqtr3d 2448 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  1 )
9174, 90eqtr3d 2442 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( -u
1 ^ k ) )  =  1 )
9291oveq1d 6059 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( 1  x.  _i ) )
935mulid2i 9053 . . . . . . . . . . . . 13  |-  ( 1  x.  _i )  =  _i
9492, 93syl6eq 2456 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  _i )
9570, 71, 943eqtr2d 2446 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  _i )
9695oveq1d 6059 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9749, 60, 963eqtr2d 2446 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9897oveq1d 6059 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
99 expcl 11358 . . . . . . . . . 10  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( ( _i  / 
3 ) ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
10011, 47, 99sylancr 645 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
101 nn0p1nn 10219 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
10245, 101syl 16 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
103102nncnd 9976 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  CC )
104102nnne0d 10004 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  =/=  0 )
10552, 100, 103, 104divassd 9785 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
10640, 58, 103, 59, 104divdiv1d 9781 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3 ^ (
( 2  x.  k
)  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
10798, 105, 1063eqtr3d 2448 . . . . . . 7  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
10858, 103mulcomd 9069 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
109108oveq2d 6060 . . . . . . 7  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( ( 2  x.  k )  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
11039, 107, 1093eqtrd 2444 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
111102, 57nnmulcld 10007 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  NN )
112111nncnd 9976 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  CC )
113111nnne0d 10004 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =/=  0 )
11440, 112, 113divcld 9750 . . . . . 6  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( ( 2  x.  k )  +  1 )  x.  ( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )  e.  CC )
115110, 114eqeltrd 2482 . . . . 5  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  e.  CC )
116115adantl 453 . . . 4  |-  ( (  T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k )  e.  CC )
11734oveq2d 6060 . . . . . . . . 9  |-  ( n  =  k  ->  (
3  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  k )  +  1 ) ) )
118 oveq2 6052 . . . . . . . . 9  |-  ( n  =  k  ->  (
9 ^ n )  =  ( 9 ^ k ) )
119117, 118oveq12d 6062 . . . . . . . 8  |-  ( n  =  k  ->  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )
120119oveq2d 6060 . . . . . . 7  |-  ( n  =  k  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
121 log2cnv.1 . . . . . . 7  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
122 ovex 6069 . . . . . . 7  |-  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e. 
_V
123120, 121, 122fvmpt 5769 . . . . . 6  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
124 expp1 11347 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k ) )  x.  3 ) )
1259, 45, 124sylancr 645 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k
) )  x.  3 ) )
126 expmul 11384 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^
k ) )
1279, 43, 126mp3an12 1269 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^ k
) )
128 sq3 11437 . . . . . . . . . . . . . . . . 17  |-  ( 3 ^ 2 )  =  9
129128oveq1i 6054 . . . . . . . . . . . . . . . 16  |-  ( ( 3 ^ 2 ) ^ k )  =  ( 9 ^ k
)
130127, 129syl6eq 2456 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( 9 ^ k
) )
131130oveq1d 6059 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( 2  x.  k ) )  x.  3 )  =  ( ( 9 ^ k )  x.  3 ) )
132 9nn 10100 . . . . . . . . . . . . . . . . 17  |-  9  e.  NN
133 nnexpcl 11353 . . . . . . . . . . . . . . . . 17  |-  ( ( 9  e.  NN  /\  k  e.  NN0 )  -> 
( 9 ^ k
)  e.  NN )
134132, 133mpan 652 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  NN )
135134nncnd 9976 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  CC )
136 mulcom 9036 . . . . . . . . . . . . . . 15  |-  ( ( ( 9 ^ k
)  e.  CC  /\  3  e.  CC )  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  ( 9 ^ k ) ) )
137135, 9, 136sylancl 644 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  (
9 ^ k ) ) )
138125, 131, 1373eqtrd 2444 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( 3  x.  (
9 ^ k ) ) )
13995, 138oveq12d 6062 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
14049, 60, 1393eqtr2d 2446 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
141140oveq1d 6059 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3  x.  ( 9 ^ k
) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
142 nnmulcl 9983 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( 9 ^ k
)  e.  NN )  ->  ( 3  x.  ( 9 ^ k
) )  e.  NN )
14355, 134, 142sylancr 645 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  NN )
144143nncnd 9976 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  CC )
145143nnne0d 10004 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  =/=  0 )
14640, 144, 103, 145, 104divdiv1d 9781 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3  x.  ( 9 ^ k ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3  x.  (
9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
147141, 105, 1463eqtr3d 2448 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3  x.  ( 9 ^ k
) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
14841, 135, 103mul32d 9236 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )
149148oveq2d 6060 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
15039, 147, 1493eqtrd 2444 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
151150oveq2d 6060 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
152 nnmulcl 9983 . . . . . . . . . . . 12  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
15355, 102, 152sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
154153, 134nnmulcld 10007 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  NN )
155154nncnd 9976 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  CC )
156154nnne0d 10004 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  =/=  0 )
15740, 155, 156divcld 9750 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e.  CC )
158 mulcom 9036 . . . . . . . 8  |-  ( ( ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) )  e.  CC  /\  ( 2  /  _i )  e.  CC )  ->  ( ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )  x.  (
2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
159157, 7, 158sylancl 644 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
1604a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  CC )
1616a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  _i  =/=  0 )
162160, 40, 155, 161, 156dmdcand 9779 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) ) )
163151, 159, 1623eqtr2d 2446 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) )
164123, 163eqtr4d 2443 . . . . 5  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 2  /  _i )  x.  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k ) ) )
165164adantl 453 . . . 4  |-  ( (  T.  /\  k  e. 
NN0 )  ->  ( F `  k )  =  ( ( 2  /  _i )  x.  ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) `
 k ) ) )
1661, 3, 8, 31, 116, 165isermulc2 12410 . . 3  |-  (  T. 
->  seq  0 (  +  ,  F )  ~~>  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) ) )
167166trud 1329 . 2  |-  seq  0
(  +  ,  F
)  ~~>  ( ( 2  /  _i )  x.  (arctan `  ( _i  /  3 ) ) )
168 bndatandm 20726 . . . . . . . 8  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  -> 
( _i  /  3
)  e.  dom arctan )
16911, 27, 168mp2an 654 . . . . . . 7  |-  ( _i 
/  3 )  e. 
dom arctan
170 atanval 20681 . . . . . . 7  |-  ( ( _i  /  3 )  e.  dom arctan  ->  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) ) )
171169, 170ax-mp 8 . . . . . 6  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) )
172 df-4 10020 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
173172oveq1i 6054 . . . . . . . . . . . 12  |-  ( 4  /  3 )  =  ( ( 3  +  1 )  /  3
)
1749, 77, 9, 10divdiri 9731 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  /  3 )  =  ( ( 3  / 
3 )  +  ( 1  /  3 ) )
1759, 10dividi 9707 . . . . . . . . . . . . 13  |-  ( 3  /  3 )  =  1
176175oveq1i 6054 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  +  ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
177173, 174, 1763eqtri 2432 . . . . . . . . . . 11  |-  ( 4  /  3 )  =  ( 1  +  ( 1  /  3 ) )
17877, 9, 10divcli 9716 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
17977, 178subnegi 9339 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
180 divneg 9669 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
1  /  3 )  =  ( -u 1  /  3 ) )
18177, 9, 10, 180mp3an 1279 . . . . . . . . . . . . 13  |-  -u (
1  /  3 )  =  ( -u 1  /  3 )
182 ixi 9611 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  = 
-u 1
183182oveq1i 6054 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( -u 1  / 
3 )
1845, 5, 9, 10divassi 9730 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( _i  x.  (
_i  /  3 ) )
185181, 183, 1843eqtr2i 2434 . . . . . . . . . . . 12  |-  -u (
1  /  3 )  =  ( _i  x.  ( _i  /  3
) )
186185oveq2i 6055 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  -  (
_i  x.  ( _i  /  3 ) ) )
187177, 179, 1863eqtr2ri 2435 . . . . . . . . . 10  |-  ( 1  -  ( _i  x.  ( _i  /  3
) ) )  =  ( 4  /  3
)
188187fveq2i 5694 . . . . . . . . 9  |-  ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  =  ( log `  ( 4  /  3
) )
1899, 10pm3.2i 442 . . . . . . . . . . . . 13  |-  ( 3  e.  CC  /\  3  =/=  0 )
190 divsubdir 9670 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 3  -  1 )  / 
3 )  =  ( ( 3  /  3
)  -  ( 1  /  3 ) ) )
1919, 77, 189, 190mp3an 1279 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( ( 3  / 
3 )  -  (
1  /  3 ) )
192 3m1e2 10056 . . . . . . . . . . . . 13  |-  ( 3  -  1 )  =  2
193192oveq1i 6054 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( 2  /  3
)
194175oveq1i 6054 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
195191, 193, 1943eqtr3i 2436 . . . . . . . . . . 11  |-  ( 2  /  3 )  =  ( 1  -  (
1  /  3 ) )
19677, 178negsubi 9338 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
197185oveq2i 6055 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) )
198195, 196, 1973eqtr2ri 2435 . . . . . . . . . 10  |-  ( 1  +  ( _i  x.  ( _i  /  3
) ) )  =  ( 2  /  3
)
199198fveq2i 5694 . . . . . . . . 9  |-  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) )  =  ( log `  ( 2  /  3 ) )
200188, 199oveq12i 6056 . . . . . . . 8  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
201 4re 10033 . . . . . . . . . . 11  |-  4  e.  RR
202 4pos 10046 . . . . . . . . . . 11  |-  0  <  4
203201, 202elrpii 10575 . . . . . . . . . 10  |-  4  e.  RR+
20415, 17elrpii 10575 . . . . . . . . . 10  |-  3  e.  RR+
205 rpdivcl 10594 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  3  e.  RR+ )  ->  (
4  /  3 )  e.  RR+ )
206203, 204, 205mp2an 654 . . . . . . . . 9  |-  ( 4  /  3 )  e.  RR+
207 2rp 10577 . . . . . . . . . 10  |-  2  e.  RR+
208 rpdivcl 10594 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  3  e.  RR+ )  ->  (
2  /  3 )  e.  RR+ )
209207, 204, 208mp2an 654 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR+
210 relogdiv 20444 . . . . . . . . 9  |-  ( ( ( 4  /  3
)  e.  RR+  /\  (
2  /  3 )  e.  RR+ )  ->  ( log `  ( ( 4  /  3 )  / 
( 2  /  3
) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) ) )
211206, 209, 210mp2an 654 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
212 4cn 10034 . . . . . . . . . . 11  |-  4  e.  CC
213 2ne0 10043 . . . . . . . . . . . 12  |-  2  =/=  0
2144, 213pm3.2i 442 . . . . . . . . . . 11  |-  ( 2  e.  CC  /\  2  =/=  0 )
215 divcan7 9683 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( 4  / 
3 )  /  (
2  /  3 ) )  =  ( 4  /  2 ) )
216212, 214, 189, 215mp3an 1279 . . . . . . . . . 10  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  ( 4  /  2
)
217 4d2e2 10092 . . . . . . . . . 10  |-  ( 4  /  2 )  =  2
218216, 217eqtri 2428 . . . . . . . . 9  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  2
219218fveq2i 5694 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( log `  2 )
220200, 211, 2193eqtr2i 2434 . . . . . . 7  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( log `  2 )
221220oveq2i 6055 . . . . . 6  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) ) ) )  =  ( ( _i 
/  2 )  x.  ( log `  2
) )
222171, 221eqtri 2428 . . . . 5  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( log `  2 ) )
223222oveq2i 6055 . . . 4  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
2245, 4, 213divcli 9716 . . . . 5  |-  ( _i 
/  2 )  e.  CC
225 logcl 20423 . . . . . 6  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( log `  2
)  e.  CC )
2264, 213, 225mp2an 654 . . . . 5  |-  ( log `  2 )  e.  CC
2277, 224, 226mulassi 9059 . . . 4  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
228223, 227eqtr4i 2431 . . 3  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( ( 2  /  _i )  x.  (
_i  /  2 ) )  x.  ( log `  2 ) )
229 divcan6 9681 . . . . 5  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( _i  e.  CC  /\  _i  =/=  0
) )  ->  (
( 2  /  _i )  x.  ( _i  /  2 ) )  =  1 )
2304, 213, 5, 6, 229mp4an 655 . . . 4  |-  ( ( 2  /  _i )  x.  ( _i  / 
2 ) )  =  1
231230oveq1i 6054 . . 3  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( 1  x.  ( log `  2 ) )
232226mulid2i 9053 . . 3  |-  ( 1  x.  ( log `  2
) )  =  ( log `  2 )
233228, 231, 2323eqtri 2432 . 2  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( log `  2 )
234167, 233breqtri 4199 1  |-  seq  0
(  +  ,  F
)  ~~>  ( log `  2
)
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176    e. cmpt 4230   dom cdm 4841   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951   _ici 8952    + caddc 8953    x. cmul 8955    < clt 9080    <_ cle 9081    - cmin 9251   -ucneg 9252    / cdiv 9637   NNcn 9960   2c2 10009   3c3 10010   4c4 10011   9c9 10016   NN0cn0 10181   ZZcz 10242   RR+crp 10572    seq cseq 11282   ^cexp 11341   abscabs 11998    ~~> cli 12237   logclog 20409  arctancatan 20661
This theorem is referenced by:  log2tlbnd  20742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029  ax-mulf 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-pm 6984  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-fi 7378  df-sup 7408  df-oi 7439  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-q 10535  df-rp 10573  df-xneg 10670  df-xadd 10671  df-xmul 10672  df-ioo 10880  df-ioc 10881  df-ico 10882  df-icc 10883  df-fz 11004  df-fzo 11095  df-fl 11161  df-mod 11210  df-seq 11283  df-exp 11342  df-fac 11526  df-bc 11553  df-hash 11578  df-shft 11841  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-limsup 12224  df-clim 12241  df-rlim 12242  df-sum 12439  df-ef 12629  df-sin 12631  df-cos 12632  df-tan 12633  df-pi 12634  df-dvds 12812  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-starv 13503  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-unif 13511  df-hom 13512  df-cco 13513  df-rest 13609  df-topn 13610  df-topgen 13626  df-pt 13627  df-prds 13630  df-xrs 13685  df-0g 13686  df-gsum 13687  df-qtop 13692  df-imas 13693  df-xps 13695  df-mre 13770  df-mrc 13771  df-acs 13773  df-mnd 14649  df-submnd 14698  df-mulg 14774  df-cntz 15075  df-cmn 15373  df-psmet 16653  df-xmet 16654  df-met 16655  df-bl 16656  df-mopn 16657  df-fbas 16658  df-fg 16659  df-cnfld 16663  df-top 16922  df-bases 16924  df-topon 16925  df-topsp 16926  df-cld 17042  df-ntr 17043  df-cls 17044  df-nei 17121  df-lp 17159  df-perf 17160  df-cn 17249  df-cnp 17250  df-haus 17337  df-cmp 17408  df-tx 17551  df-hmeo 17744  df-fil 17835  df-fm 17927  df-flim 17928  df-flf 17929  df-xms 18307  df-ms 18308  df-tms 18309  df-cncf 18865  df-limc 19710  df-dv 19711  df-ulm 20250  df-log 20411  df-atan 20664
  Copyright terms: Public domain W3C validator