MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Unicode version

Theorem log2cnv 20351
Description: Using the Taylor series for arctan ( _i  / 
3 ), produce a rapidly convergent series for  log 2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
Assertion
Ref Expression
log2cnv  |-  seq  0
(  +  ,  F
)  ~~>  ( log `  2
)

Proof of Theorem log2cnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10354 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10127 . . . . 5  |-  0  e.  ZZ
32a1i 10 . . . 4  |-  (  T. 
->  0  e.  ZZ )
4 2cn 9906 . . . . . 6  |-  2  e.  CC
5 ax-icn 8886 . . . . . 6  |-  _i  e.  CC
6 ine0 9305 . . . . . 6  |-  _i  =/=  0
74, 5, 6divcli 9592 . . . . 5  |-  ( 2  /  _i )  e.  CC
87a1i 10 . . . 4  |-  (  T. 
->  ( 2  /  _i )  e.  CC )
9 3cn 9908 . . . . . . 7  |-  3  e.  CC
10 3ne0 9921 . . . . . . 7  |-  3  =/=  0
115, 9, 10divcli 9592 . . . . . 6  |-  ( _i 
/  3 )  e.  CC
12 absdiv 11876 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  ( abs `  ( _i  / 
3 ) )  =  ( ( abs `  _i )  /  ( abs `  3
) ) )
135, 9, 10, 12mp3an 1277 . . . . . . . 8  |-  ( abs `  ( _i  /  3
) )  =  ( ( abs `  _i )  /  ( abs `  3
) )
14 absi 11867 . . . . . . . . 9  |-  ( abs `  _i )  =  1
15 3re 9907 . . . . . . . . . 10  |-  3  e.  RR
16 0re 8928 . . . . . . . . . . 11  |-  0  e.  RR
17 3pos 9920 . . . . . . . . . . 11  |-  0  <  3
1816, 15, 17ltleii 9031 . . . . . . . . . 10  |-  0  <_  3
19 absid 11877 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( abs `  3
)  =  3 )
2015, 18, 19mp2an 653 . . . . . . . . 9  |-  ( abs `  3 )  =  3
2114, 20oveq12i 5957 . . . . . . . 8  |-  ( ( abs `  _i )  /  ( abs `  3
) )  =  ( 1  /  3 )
2213, 21eqtri 2378 . . . . . . 7  |-  ( abs `  ( _i  /  3
) )  =  ( 1  /  3 )
23 1lt3 9980 . . . . . . . 8  |-  1  <  3
24 recgt1 9742 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <  3 )  -> 
( 1  <  3  <->  ( 1  /  3 )  <  1 ) )
2515, 17, 24mp2an 653 . . . . . . . 8  |-  ( 1  <  3  <->  ( 1  /  3 )  <  1 )
2623, 25mpbi 199 . . . . . . 7  |-  ( 1  /  3 )  <  1
2722, 26eqbrtri 4123 . . . . . 6  |-  ( abs `  ( _i  /  3
) )  <  1
28 eqid 2358 . . . . . . 7  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )
2928atantayl3 20346 . . . . . 6  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
3011, 27, 29mp2an 653 . . . . 5  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3
) )
3130a1i 10 . . . 4  |-  (  T. 
->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
32 oveq2 5953 . . . . . . . . 9  |-  ( n  =  k  ->  ( -u 1 ^ n )  =  ( -u 1 ^ k ) )
33 oveq2 5953 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
3433oveq1d 5960 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
3534oveq2d 5961 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( _i 
/  3 ) ^
( ( 2  x.  k )  +  1 ) ) )
3635, 34oveq12d 5963 . . . . . . . . 9  |-  ( n  =  k  ->  (
( ( _i  / 
3 ) ^ (
( 2  x.  n
)  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) )  =  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )
3732, 36oveq12d 5963 . . . . . . . 8  |-  ( n  =  k  ->  (
( -u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
38 ovex 5970 . . . . . . . 8  |-  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  e.  _V
3937, 28, 38fvmpt 5685 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
405a1i 10 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  _i  e.  CC )
419a1i 10 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  e.  CC )
4210a1i 10 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  =/=  0 )
43 2nn0 10074 . . . . . . . . . . . . . 14  |-  2  e.  NN0
44 nn0mulcl 10092 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN0  /\  k  e.  NN0 )  -> 
( 2  x.  k
)  e.  NN0 )
4543, 44mpan 651 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e. 
NN0 )
46 peano2nn0 10096 . . . . . . . . . . . . 13  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4745, 46syl 15 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4840, 41, 42, 47expdivd 11352 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( ( 2  x.  k )  +  1 ) )  /  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
4948oveq2d 5961 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
50 neg1cn 9903 . . . . . . . . . . . 12  |-  -u 1  e.  CC
51 expcl 11214 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( -u 1 ^ k )  e.  CC )
5250, 51mpan 651 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( -u
1 ^ k )  e.  CC )
53 expcl 11214 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
545, 47, 53sylancr 644 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
55 3nn 9970 . . . . . . . . . . . . 13  |-  3  e.  NN
56 nnexpcl 11209 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  e.  NN )
5755, 47, 56sylancr 644 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  NN )
5857nncnd 9852 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
5957nnne0d 9880 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =/=  0 )
6052, 54, 58, 59divassd 9661 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
61 expp1 11203 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( _i ^ ( 2  x.  k ) )  x.  _i ) )
625, 45, 61sylancr 644 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( 2  x.  k
) )  x.  _i ) )
63 expmul 11240 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
_i ^ ( 2  x.  k ) )  =  ( ( _i
^ 2 ) ^
k ) )
645, 43, 63mp3an12 1267 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( ( _i ^
2 ) ^ k
) )
65 i2 11296 . . . . . . . . . . . . . . . . 17  |-  ( _i
^ 2 )  = 
-u 1
6665oveq1i 5955 . . . . . . . . . . . . . . . 16  |-  ( ( _i ^ 2 ) ^ k )  =  ( -u 1 ^ k )
6764, 66syl6eq 2406 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( -u 1 ^ k ) )
6867oveq1d 5960 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( _i ^ ( 2  x.  k ) )  x.  _i )  =  ( ( -u 1 ^ k )  x.  _i ) )
6962, 68eqtrd 2390 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( -u 1 ^ k )  x.  _i ) )
7069oveq2d 5961 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7152, 52, 40mulassd 8948 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7250a1i 10 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  -u 1  e.  CC )
73 id 19 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
7472, 73, 73expaddd 11340 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  ( ( -u
1 ^ k )  x.  ( -u 1 ^ k ) ) )
75 expmul 11240 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  -> 
( -u 1 ^ (
2  x.  k ) )  =  ( (
-u 1 ^ 2 ) ^ k ) )
7650, 43, 75mp3an12 1267 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( ( -u
1 ^ 2 ) ^ k ) )
77 ax-1cn 8885 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
78 sqneg 11257 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
7977, 78ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
80 sq1 11291 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ^ 2 )  =  1
8179, 80eqtri 2378 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1 ^ 2 )  =  1
8281oveq1i 5955 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1 ^ 2 ) ^ k )  =  ( 1 ^ k )
8376, 82syl6eq 2406 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( 1 ^ k ) )
84 nn0cn 10067 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  k  e.  CC )
85842timesd 10046 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( 2  x.  k )  =  ( k  +  k ) )
8685oveq2d 5961 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( -u 1 ^ ( k  +  k ) ) )
87 nn0z 10138 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
88 1exp 11224 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
8987, 88syl 15 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 1 ^ k )  =  1 )
9083, 86, 893eqtr3d 2398 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  1 )
9174, 90eqtr3d 2392 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( -u
1 ^ k ) )  =  1 )
9291oveq1d 5960 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( 1  x.  _i ) )
935mulid2i 8930 . . . . . . . . . . . . 13  |-  ( 1  x.  _i )  =  _i
9492, 93syl6eq 2406 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  _i )
9570, 71, 943eqtr2d 2396 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  _i )
9695oveq1d 5960 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9749, 60, 963eqtr2d 2396 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9897oveq1d 5960 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
99 expcl 11214 . . . . . . . . . 10  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( ( _i  / 
3 ) ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
10011, 47, 99sylancr 644 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
101 nn0p1nn 10095 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
10245, 101syl 15 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
103102nncnd 9852 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  CC )
104102nnne0d 9880 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  =/=  0 )
10552, 100, 103, 104divassd 9661 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
10640, 58, 103, 59, 104divdiv1d 9657 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3 ^ (
( 2  x.  k
)  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
10798, 105, 1063eqtr3d 2398 . . . . . . 7  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
10858, 103mulcomd 8946 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
109108oveq2d 5961 . . . . . . 7  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( ( 2  x.  k )  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
11039, 107, 1093eqtrd 2394 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
111102, 57nnmulcld 9883 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  NN )
112111nncnd 9852 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  CC )
113111nnne0d 9880 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =/=  0 )
11440, 112, 113divcld 9626 . . . . . 6  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( ( 2  x.  k )  +  1 )  x.  ( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )  e.  CC )
115110, 114eqeltrd 2432 . . . . 5  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  e.  CC )
116115adantl 452 . . . 4  |-  ( (  T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k )  e.  CC )
11734oveq2d 5961 . . . . . . . . 9  |-  ( n  =  k  ->  (
3  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  k )  +  1 ) ) )
118 oveq2 5953 . . . . . . . . 9  |-  ( n  =  k  ->  (
9 ^ n )  =  ( 9 ^ k ) )
119117, 118oveq12d 5963 . . . . . . . 8  |-  ( n  =  k  ->  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )
120119oveq2d 5961 . . . . . . 7  |-  ( n  =  k  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
121 log2cnv.1 . . . . . . 7  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
122 ovex 5970 . . . . . . 7  |-  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e. 
_V
123120, 121, 122fvmpt 5685 . . . . . 6  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
124 expp1 11203 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k ) )  x.  3 ) )
1259, 45, 124sylancr 644 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k
) )  x.  3 ) )
126 expmul 11240 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^
k ) )
1279, 43, 126mp3an12 1267 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^ k
) )
128 sq3 11293 . . . . . . . . . . . . . . . . 17  |-  ( 3 ^ 2 )  =  9
129128oveq1i 5955 . . . . . . . . . . . . . . . 16  |-  ( ( 3 ^ 2 ) ^ k )  =  ( 9 ^ k
)
130127, 129syl6eq 2406 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( 9 ^ k
) )
131130oveq1d 5960 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( 2  x.  k ) )  x.  3 )  =  ( ( 9 ^ k )  x.  3 ) )
132 9nn 9976 . . . . . . . . . . . . . . . . 17  |-  9  e.  NN
133 nnexpcl 11209 . . . . . . . . . . . . . . . . 17  |-  ( ( 9  e.  NN  /\  k  e.  NN0 )  -> 
( 9 ^ k
)  e.  NN )
134132, 133mpan 651 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  NN )
135134nncnd 9852 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  CC )
136 mulcom 8913 . . . . . . . . . . . . . . 15  |-  ( ( ( 9 ^ k
)  e.  CC  /\  3  e.  CC )  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  ( 9 ^ k ) ) )
137135, 9, 136sylancl 643 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  (
9 ^ k ) ) )
138125, 131, 1373eqtrd 2394 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( 3  x.  (
9 ^ k ) ) )
13995, 138oveq12d 5963 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
14049, 60, 1393eqtr2d 2396 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
141140oveq1d 5960 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3  x.  ( 9 ^ k
) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
142 nnmulcl 9859 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( 9 ^ k
)  e.  NN )  ->  ( 3  x.  ( 9 ^ k
) )  e.  NN )
14355, 134, 142sylancr 644 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  NN )
144143nncnd 9852 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  CC )
145143nnne0d 9880 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  =/=  0 )
14640, 144, 103, 145, 104divdiv1d 9657 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3  x.  ( 9 ^ k ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3  x.  (
9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
147141, 105, 1463eqtr3d 2398 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3  x.  ( 9 ^ k
) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
14841, 135, 103mul32d 9112 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )
149148oveq2d 5961 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
15039, 147, 1493eqtrd 2394 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
151150oveq2d 5961 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
152 nnmulcl 9859 . . . . . . . . . . . 12  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
15355, 102, 152sylancr 644 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
154153, 134nnmulcld 9883 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  NN )
155154nncnd 9852 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  CC )
156154nnne0d 9880 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  =/=  0 )
15740, 155, 156divcld 9626 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e.  CC )
158 mulcom 8913 . . . . . . . 8  |-  ( ( ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) )  e.  CC  /\  ( 2  /  _i )  e.  CC )  ->  ( ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )  x.  (
2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
159157, 7, 158sylancl 643 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
1604a1i 10 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  CC )
1616a1i 10 . . . . . . . 8  |-  ( k  e.  NN0  ->  _i  =/=  0 )
162160, 40, 155, 161, 156dmdcand 9655 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) ) )
163151, 159, 1623eqtr2d 2396 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) )
164123, 163eqtr4d 2393 . . . . 5  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 2  /  _i )  x.  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k ) ) )
165164adantl 452 . . . 4  |-  ( (  T.  /\  k  e. 
NN0 )  ->  ( F `  k )  =  ( ( 2  /  _i )  x.  ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) `
 k ) ) )
1661, 3, 8, 31, 116, 165isermulc2 12227 . . 3  |-  (  T. 
->  seq  0 (  +  ,  F )  ~~>  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) ) )
167166trud 1323 . 2  |-  seq  0
(  +  ,  F
)  ~~>  ( ( 2  /  _i )  x.  (arctan `  ( _i  /  3 ) ) )
168 bndatandm 20336 . . . . . . . 8  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  -> 
( _i  /  3
)  e.  dom arctan )
16911, 27, 168mp2an 653 . . . . . . 7  |-  ( _i 
/  3 )  e. 
dom arctan
170 atanval 20291 . . . . . . 7  |-  ( ( _i  /  3 )  e.  dom arctan  ->  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) ) )
171169, 170ax-mp 8 . . . . . 6  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) )
172 df-4 9896 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
173172oveq1i 5955 . . . . . . . . . . . 12  |-  ( 4  /  3 )  =  ( ( 3  +  1 )  /  3
)
1749, 77, 9, 10divdiri 9607 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  /  3 )  =  ( ( 3  / 
3 )  +  ( 1  /  3 ) )
1759, 10dividi 9583 . . . . . . . . . . . . 13  |-  ( 3  /  3 )  =  1
176175oveq1i 5955 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  +  ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
177173, 174, 1763eqtri 2382 . . . . . . . . . . 11  |-  ( 4  /  3 )  =  ( 1  +  ( 1  /  3 ) )
17877, 9, 10divcli 9592 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
17977, 178subnegi 9215 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
180 divneg 9545 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
1  /  3 )  =  ( -u 1  /  3 ) )
18177, 9, 10, 180mp3an 1277 . . . . . . . . . . . . 13  |-  -u (
1  /  3 )  =  ( -u 1  /  3 )
182 ixi 9487 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  = 
-u 1
183182oveq1i 5955 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( -u 1  / 
3 )
1845, 5, 9, 10divassi 9606 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( _i  x.  (
_i  /  3 ) )
185181, 183, 1843eqtr2i 2384 . . . . . . . . . . . 12  |-  -u (
1  /  3 )  =  ( _i  x.  ( _i  /  3
) )
186185oveq2i 5956 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  -  (
_i  x.  ( _i  /  3 ) ) )
187177, 179, 1863eqtr2ri 2385 . . . . . . . . . 10  |-  ( 1  -  ( _i  x.  ( _i  /  3
) ) )  =  ( 4  /  3
)
188187fveq2i 5611 . . . . . . . . 9  |-  ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  =  ( log `  ( 4  /  3
) )
1899, 10pm3.2i 441 . . . . . . . . . . . . 13  |-  ( 3  e.  CC  /\  3  =/=  0 )
190 divsubdir 9546 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 3  -  1 )  / 
3 )  =  ( ( 3  /  3
)  -  ( 1  /  3 ) ) )
1919, 77, 189, 190mp3an 1277 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( ( 3  / 
3 )  -  (
1  /  3 ) )
192 df-3 9895 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
193192oveq1i 5955 . . . . . . . . . . . . . 14  |-  ( 3  -  1 )  =  ( ( 2  +  1 )  -  1 )
194 pncan 9147 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  +  1 )  -  1 )  =  2 )
1954, 77, 194mp2an 653 . . . . . . . . . . . . . 14  |-  ( ( 2  +  1 )  -  1 )  =  2
196193, 195eqtri 2378 . . . . . . . . . . . . 13  |-  ( 3  -  1 )  =  2
197196oveq1i 5955 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( 2  /  3
)
198175oveq1i 5955 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
199191, 197, 1983eqtr3i 2386 . . . . . . . . . . 11  |-  ( 2  /  3 )  =  ( 1  -  (
1  /  3 ) )
20077, 178negsubi 9214 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
201185oveq2i 5956 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) )
202199, 200, 2013eqtr2ri 2385 . . . . . . . . . 10  |-  ( 1  +  ( _i  x.  ( _i  /  3
) ) )  =  ( 2  /  3
)
203202fveq2i 5611 . . . . . . . . 9  |-  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) )  =  ( log `  ( 2  /  3 ) )
204188, 203oveq12i 5957 . . . . . . . 8  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
205 4re 9909 . . . . . . . . . . 11  |-  4  e.  RR
206 4pos 9922 . . . . . . . . . . 11  |-  0  <  4
207205, 206elrpii 10449 . . . . . . . . . 10  |-  4  e.  RR+
20815, 17elrpii 10449 . . . . . . . . . 10  |-  3  e.  RR+
209 rpdivcl 10468 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  3  e.  RR+ )  ->  (
4  /  3 )  e.  RR+ )
210207, 208, 209mp2an 653 . . . . . . . . 9  |-  ( 4  /  3 )  e.  RR+
211 2rp 10451 . . . . . . . . . 10  |-  2  e.  RR+
212 rpdivcl 10468 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  3  e.  RR+ )  ->  (
2  /  3 )  e.  RR+ )
213211, 208, 212mp2an 653 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR+
214 relogdiv 20054 . . . . . . . . 9  |-  ( ( ( 4  /  3
)  e.  RR+  /\  (
2  /  3 )  e.  RR+ )  ->  ( log `  ( ( 4  /  3 )  / 
( 2  /  3
) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) ) )
215210, 213, 214mp2an 653 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
216 4cn 9910 . . . . . . . . . . 11  |-  4  e.  CC
217 2ne0 9919 . . . . . . . . . . . 12  |-  2  =/=  0
2184, 217pm3.2i 441 . . . . . . . . . . 11  |-  ( 2  e.  CC  /\  2  =/=  0 )
219 divcan7 9559 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( 4  / 
3 )  /  (
2  /  3 ) )  =  ( 4  /  2 ) )
220216, 218, 189, 219mp3an 1277 . . . . . . . . . 10  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  ( 4  /  2
)
221 4d2e2 9968 . . . . . . . . . 10  |-  ( 4  /  2 )  =  2
222220, 221eqtri 2378 . . . . . . . . 9  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  2
223222fveq2i 5611 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( log `  2 )
224204, 215, 2233eqtr2i 2384 . . . . . . 7  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( log `  2 )
225224oveq2i 5956 . . . . . 6  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) ) ) )  =  ( ( _i 
/  2 )  x.  ( log `  2
) )
226171, 225eqtri 2378 . . . . 5  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( log `  2 ) )
227226oveq2i 5956 . . . 4  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
2285, 4, 217divcli 9592 . . . . 5  |-  ( _i 
/  2 )  e.  CC
229 logcl 20033 . . . . . 6  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( log `  2
)  e.  CC )
2304, 217, 229mp2an 653 . . . . 5  |-  ( log `  2 )  e.  CC
2317, 228, 230mulassi 8936 . . . 4  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
232227, 231eqtr4i 2381 . . 3  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( ( 2  /  _i )  x.  (
_i  /  2 ) )  x.  ( log `  2 ) )
233 divcan6 9557 . . . . 5  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( _i  e.  CC  /\  _i  =/=  0
) )  ->  (
( 2  /  _i )  x.  ( _i  /  2 ) )  =  1 )
2344, 217, 5, 6, 233mp4an 654 . . . 4  |-  ( ( 2  /  _i )  x.  ( _i  / 
2 ) )  =  1
235234oveq1i 5955 . . 3  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( 1  x.  ( log `  2 ) )
236230mulid2i 8930 . . 3  |-  ( 1  x.  ( log `  2
) )  =  ( log `  2 )
237232, 235, 2363eqtri 2382 . 2  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( log `  2 )
238167, 237breqtri 4127 1  |-  seq  0
(  +  ,  F
)  ~~>  ( log `  2
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1316    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4104    e. cmpt 4158   dom cdm 4771   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827   1c1 8828   _ici 8829    + caddc 8830    x. cmul 8832    < clt 8957    <_ cle 8958    - cmin 9127   -ucneg 9128    / cdiv 9513   NNcn 9836   2c2 9885   3c3 9886   4c4 9887   9c9 9892   NN0cn0 10057   ZZcz 10116   RR+crp 10446    seq cseq 11138   ^cexp 11197   abscabs 11815    ~~> cli 12054   logclog 20019  arctancatan 20271
This theorem is referenced by:  log2tlbnd  20352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ioc 10753  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-fac 11382  df-bc 11409  df-hash 11431  df-shft 11658  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-limsup 12041  df-clim 12058  df-rlim 12059  df-sum 12256  df-ef 12446  df-sin 12448  df-cos 12449  df-tan 12450  df-pi 12451  df-dvds 12629  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-lp 16974  df-perf 16975  df-cn 17063  df-cnp 17064  df-haus 17149  df-cmp 17220  df-tx 17363  df-hmeo 17552  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-xms 17987  df-ms 17988  df-tms 17989  df-cncf 18485  df-limc 19320  df-dv 19321  df-ulm 19860  df-log 20021  df-atan 20274
  Copyright terms: Public domain W3C validator