MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Unicode version

Theorem log2ublem1 20258
Description: Lemma for log2ub 20261. The proof of log2ub 20261, which is simply the evaluation of log2tlbnd 20257 for  N  =  4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator  d (usually a large power of  10) and work with the closest approximations of the form  n  /  d for some integer  n instead. It turns out that for our purposes it is sufficient to take  d  =  ( 3 ^ 7 )  x.  5  x.  7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
log2ublem1.2  |-  A  e.  RR
log2ublem1.3  |-  D  e. 
NN0
log2ublem1.4  |-  E  e.  NN
log2ublem1.5  |-  B  e. 
NN0
log2ublem1.6  |-  F  e. 
NN0
log2ublem1.7  |-  C  =  ( A  +  ( D  /  E ) )
log2ublem1.8  |-  ( B  +  F )  =  G
log2ublem1.9  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
Assertion
Ref Expression
log2ublem1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
2 3nn 9894 . . . . . . . 8  |-  3  e.  NN
3 7nn0 10003 . . . . . . . 8  |-  7  e.  NN0
4 nnexpcl 11132 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  7  e.  NN0 )  -> 
( 3 ^ 7 )  e.  NN )
52, 3, 4mp2an 653 . . . . . . 7  |-  ( 3 ^ 7 )  e.  NN
6 5nn 9896 . . . . . . . 8  |-  5  e.  NN
7 7nn 9898 . . . . . . . 8  |-  7  e.  NN
86, 7nnmulcli 9786 . . . . . . 7  |-  ( 5  x.  7 )  e.  NN
95, 8nnmulcli 9786 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  NN
109nncni 9772 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  CC
11 log2ublem1.3 . . . . . 6  |-  D  e. 
NN0
1211nn0cni 9993 . . . . 5  |-  D  e.  CC
13 log2ublem1.4 . . . . . 6  |-  E  e.  NN
1413nncni 9772 . . . . 5  |-  E  e.  CC
1513nnne0i 9796 . . . . 5  |-  E  =/=  0
1610, 12, 14, 15divassi 9532 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )
17 log2ublem1.9 . . . . 5  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
18 3nn0 9999 . . . . . . . . . 10  |-  3  e.  NN0
1918, 3nn0expcli 11145 . . . . . . . . 9  |-  ( 3 ^ 7 )  e. 
NN0
20 5nn0 10001 . . . . . . . . . 10  |-  5  e.  NN0
2120, 3nn0mulcli 10018 . . . . . . . . 9  |-  ( 5  x.  7 )  e. 
NN0
2219, 21nn0mulcli 10018 . . . . . . . 8  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e. 
NN0
2322, 11nn0mulcli 10018 . . . . . . 7  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e. 
NN0
2423nn0rei 9992 . . . . . 6  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e.  RR
25 log2ublem1.6 . . . . . . 7  |-  F  e. 
NN0
2625nn0rei 9992 . . . . . 6  |-  F  e.  RR
2713nnrei 9771 . . . . . . 7  |-  E  e.  RR
2813nngt0i 9795 . . . . . . 7  |-  0  <  E
2927, 28pm3.2i 441 . . . . . 6  |-  ( E  e.  RR  /\  0  <  E )
30 ledivmul 9645 . . . . . 6  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  e.  RR  /\  F  e.  RR  /\  ( E  e.  RR  /\  0  <  E ) )  -> 
( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  /  E )  <_  F  <->  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  <_  ( E  x.  F ) ) )
3124, 26, 29, 30mp3an 1277 . . . . 5  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  /  E )  <_  F  <->  ( (
( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
) )
3217, 31mpbir 200 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  <_  F
3316, 32eqbrtrri 4060 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F
349nnrei 9771 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  RR
35 log2ublem1.2 . . . . 5  |-  A  e.  RR
3634, 35remulcli 8867 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  e.  RR
3711nn0rei 9992 . . . . . 6  |-  D  e.  RR
38 nndivre 9797 . . . . . 6  |-  ( ( D  e.  RR  /\  E  e.  NN )  ->  ( D  /  E
)  e.  RR )
3937, 13, 38mp2an 653 . . . . 5  |-  ( D  /  E )  e.  RR
4034, 39remulcli 8867 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  e.  RR
41 log2ublem1.5 . . . . 5  |-  B  e. 
NN0
4241nn0rei 9992 . . . 4  |-  B  e.  RR
4336, 40, 42, 26le2addi 9352 . . 3  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A
)  <_  B  /\  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F )  -> 
( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )  <_  ( B  +  F ) )
441, 33, 43mp2an 653 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  <_ 
( B  +  F
)
45 log2ublem1.7 . . . 4  |-  C  =  ( A  +  ( D  /  E ) )
4645oveq2i 5885 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E ) ) )
4735recni 8865 . . . 4  |-  A  e.  CC
4839recni 8865 . . . 4  |-  ( D  /  E )  e.  CC
4910, 47, 48adddii 8863 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E
) ) )  =  ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )
5046, 49eqtr2i 2317 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C
)
51 log2ublem1.8 . 2  |-  ( B  +  F )  =  G
5244, 50, 513brtr3i 4066 1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   NNcn 9762   3c3 9812   5c5 9814   7c7 9816   NN0cn0 9981   ^cexp 11120
This theorem is referenced by:  log2ublem2  20259  log2ub  20261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator