MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Unicode version

Theorem logccv 20010
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )

Proof of Theorem logccv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR+ )
21rpred 10390 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
3 simpl2 959 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR+ )
43rpred 10390 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR )
5 simpl3 960 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  <  B )
61rpgt0d 10393 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  0  <  A )
7 ltpnf 10463 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  <  +oo )
84, 7syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  <  +oo )
9 0xr 8878 . . . . . . . . . . . 12  |-  0  e.  RR*
10 pnfxr 10455 . . . . . . . . . . . 12  |-  +oo  e.  RR*
11 iccssioo 10719 . . . . . . . . . . . 12  |-  ( ( ( 0  e.  RR*  /\ 
+oo  e.  RR* )  /\  ( 0  <  A  /\  B  <  +oo )
)  ->  ( A [,] B )  C_  (
0 (,)  +oo ) )
129, 10, 11mpanl12 663 . . . . . . . . . . 11  |-  ( ( 0  <  A  /\  B  <  +oo )  ->  ( A [,] B )  C_  ( 0 (,)  +oo ) )
136, 8, 12syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A [,] B )  C_  ( 0 (,)  +oo ) )
14 ioorp 10727 . . . . . . . . . 10  |-  ( 0 (,)  +oo )  =  RR+
1513, 14syl6sseq 3224 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A [,] B )  C_  RR+ )
1615sselda 3180 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR+ )
1716relogcld 19974 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  ( log `  x )  e.  RR )
1817renegcld 9210 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  -u ( log `  x )  e.  RR )
19 eqid 2283 . . . . . 6  |-  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )
2018, 19fmptd 5684 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) : ( A [,] B ) --> RR )
21 ax-resscn 8794 . . . . . 6  |-  RR  C_  CC
22 resabs1 4984 . . . . . . . . 9  |-  ( ( A [,] B ) 
C_  RR+  ->  ( ( log  |`  RR+ )  |`  ( A [,] B ) )  =  ( log  |`  ( A [,] B ) ) )
2315, 22syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  =  ( log  |`  ( A [,] B ) ) )
24 ssid 3197 . . . . . . . . . . 11  |-  CC  C_  CC
25 cncfss 18403 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC ) )
2621, 24, 25mp2an 653 . . . . . . . . . 10  |-  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC )
27 relogcn 19985 . . . . . . . . . 10  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
2826, 27sselii 3177 . . . . . . . . 9  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )
29 rescncf 18401 . . . . . . . . 9  |-  ( ( A [,] B ) 
C_  RR+  ->  ( ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
3015, 28, 29ee10 1366 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) )
3123, 30eqeltrrd 2358 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
32 fvres 5542 . . . . . . . . . . 11  |-  ( x  e.  ( A [,] B )  ->  (
( log  |`  ( A [,] B ) ) `
 x )  =  ( log `  x
) )
3332negeqd 9046 . . . . . . . . . 10  |-  ( x  e.  ( A [,] B )  ->  -u (
( log  |`  ( A [,] B ) ) `
 x )  = 
-u ( log `  x
) )
3433mpteq2ia 4102 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  -u (
( log  |`  ( A [,] B ) ) `
 x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )
3534eqcomi 2287 . . . . . . . 8  |-  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( ( log  |`  ( A [,] B
) ) `  x
) )
3635negfcncf 18422 . . . . . . 7  |-  ( ( log  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC )  ->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
3731, 36syl 15 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> CC ) )
38 cncffvrn 18402 . . . . . 6  |-  ( ( RR  C_  CC  /\  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) : ( A [,] B ) --> RR ) )
3921, 37, 38sylancr 644 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) : ( A [,] B ) --> RR ) )
4020, 39mpbird 223 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> RR ) )
41 ioossre 10712 . . . . . . . 8  |-  ( A (,) B )  C_  RR
42 ltso 8903 . . . . . . . 8  |-  <  Or  RR
43 soss 4332 . . . . . . . 8  |-  ( ( A (,) B ) 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  ( A (,) B ) ) )
4441, 42, 43mp2 17 . . . . . . 7  |-  <  Or  ( A (,) B )
4544a1i 10 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Or  ( A (,) B
) )
46 ioossicc 10735 . . . . . . . . . . . . . 14  |-  ( A (,) B )  C_  ( A [,] B )
4746, 15syl5ss 3190 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A (,) B )  C_  RR+ )
4847sselda 3180 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  x  e.  RR+ )
4948rprecred 10401 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  (
1  /  x )  e.  RR )
5049renegcld 9210 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  -u (
1  /  x )  e.  RR )
51 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  =  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )
5250, 51fmptd 5684 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B ) --> RR )
53 frn 5395 . . . . . . . . 9  |-  ( ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B ) --> RR  ->  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  C_  RR )
5452, 53syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ran  ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  C_  RR )
55 soss 4332 . . . . . . . 8  |-  ( ran  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  C_  RR  ->  (  <  Or  RR  ->  <  Or  ran  ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) ) )
5654, 42, 55ee10 1366 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Or 
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
57 sopo 4331 . . . . . . 7  |-  (  < 
Or  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  ->  <  Po  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) )
5856, 57syl 15 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Po 
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
59 negex 9050 . . . . . . . . 9  |-  -u (
1  /  x )  e.  _V
6059, 51fnmpti 5372 . . . . . . . 8  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  Fn  ( A (,) B )
61 dffn4 5457 . . . . . . . 8  |-  ( ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  Fn  ( A (,) B )  <->  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) : ( A (,) B
) -onto-> ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
6260, 61mpbi 199 . . . . . . 7  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) : ( A (,) B ) -onto-> ran  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )
6362a1i 10 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B )
-onto->
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
6447sselda 3180 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  z  e.  ( A (,) B
) )  ->  z  e.  RR+ )
6564adantrl 696 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
z  e.  RR+ )
6665rprecred 10401 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( 1  /  z
)  e.  RR )
6747sselda 3180 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  y  e.  ( A (,) B
) )  ->  y  e.  RR+ )
6867adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
y  e.  RR+ )
6968rprecred 10401 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( 1  /  y
)  e.  RR )
7066, 69ltnegd 9350 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( ( 1  / 
z )  <  (
1  /  y )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
7168, 65ltrecd 10408 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  <->  ( 1  /  z )  <  ( 1  / 
y ) ) )
72 oveq2 5866 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
1  /  x )  =  ( 1  / 
y ) )
7372negeqd 9046 . . . . . . . . . . . 12  |-  ( x  =  y  ->  -u (
1  /  x )  =  -u ( 1  / 
y ) )
74 negex 9050 . . . . . . . . . . . 12  |-  -u (
1  /  y )  e.  _V
7573, 51, 74fvmpt 5602 . . . . . . . . . . 11  |-  ( y  e.  ( A (,) B )  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  =  -u ( 1  /  y
) )
76 oveq2 5866 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
1  /  x )  =  ( 1  / 
z ) )
7776negeqd 9046 . . . . . . . . . . . 12  |-  ( x  =  z  ->  -u (
1  /  x )  =  -u ( 1  / 
z ) )
78 negex 9050 . . . . . . . . . . . 12  |-  -u (
1  /  z )  e.  _V
7977, 51, 78fvmpt 5602 . . . . . . . . . . 11  |-  ( z  e.  ( A (,) B )  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z )  =  -u ( 1  /  z
) )
8075, 79breqan12d 4038 . . . . . . . . . 10  |-  ( ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  y )  <  ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  z )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
8180adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  y )  <  ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  z )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
8270, 71, 813bitr4d 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  <->  ( ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) )
8382biimpd 198 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  ->  ( ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) )
8483ralrimivva 2635 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A. y  e.  ( A (,) B
) A. z  e.  ( A (,) B
) ( y  < 
z  ->  ( (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) `  y
)  <  ( (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) `  z
) ) )
85 soisoi 5825 . . . . . 6  |-  ( ( (  <  Or  ( A (,) B )  /\  <  Po  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) )  /\  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) : ( A (,) B
) -onto-> ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  /\  A. y  e.  ( A (,) B ) A. z  e.  ( A (,) B ) ( y  <  z  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) ) )  ->  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
8645, 58, 63, 84, 85syl22anc 1183 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
87 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
8887prid1 3734 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
8988a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  RR  e.  { RR ,  CC } )
90 relogcl 19932 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
9190adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
9291recnd 8861 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
9392negcld 9144 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  -u ( log `  x )  e.  CC )
9459a1i 10 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  -u (
1  /  x )  e.  _V )
95 ovex 5883 . . . . . . . . 9  |-  ( 1  /  x )  e. 
_V
9695a1i 10 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
_V )
97 dvrelog 19984 . . . . . . . . 9  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( x  e.  RR+  |->  ( 1  /  x ) )
98 relogf1o 19924 . . . . . . . . . . . . 13  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
99 f1of 5472 . . . . . . . . . . . . 13  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
10098, 99mp1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ ) : RR+ --> RR )
101100feqmptd 5575 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) ) )
102 fvres 5542 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log  |`  RR+ ) `  x )  =  ( log `  x ) )
103102mpteq2ia 4102 . . . . . . . . . . 11  |-  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
104101, 103syl6eq 2331 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
105104oveq2d 5874 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( log  |`  RR+ )
)  =  ( RR 
_D  ( x  e.  RR+  |->  ( log `  x
) ) ) )
10697, 105syl5reqr 2330 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  x
) ) )  =  ( x  e.  RR+  |->  ( 1  /  x
) ) )
10789, 92, 96, 106dvmptneg 19315 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  RR+  |->  -u ( log `  x
) ) )  =  ( x  e.  RR+  |->  -u ( 1  /  x
) ) )
108 eqid 2283 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
109108tgioo2 18309 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
110 iccntr 18326 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1112, 4, 110syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
11289, 93, 94, 107, 15, 109, 108, 111dvmptres2 19311 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  =  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) )
113 isoeq1 5816 . . . . . 6  |-  ( ( RR  _D  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  ->  ( ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )  <-> 
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) ) )
114112, 113syl 15 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( RR  _D  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )  <-> 
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) ) )
11586, 114mpbird 223 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
116 simpr 447 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  ( 0 (,) 1
) )
117 eqid 2283 . . . 4  |-  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
1182, 4, 5, 40, 115, 116, 117dvcvx 19367 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  +  ( ( 1  -  T )  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `
 B ) ) ) )
119 ax-1cn 8795 . . . . . . . 8  |-  1  e.  CC
120 elioore 10686 . . . . . . . . . 10  |-  ( T  e.  ( 0 (,) 1 )  ->  T  e.  RR )
121120adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  RR )
122121recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  CC )
123 nncan 9076 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
124119, 122, 123sylancr 644 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  ( 1  -  T ) )  =  T )
125124oveq1d 5873 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  (
1  -  T ) )  x.  A )  =  ( T  x.  A ) )
126125oveq1d 5873 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )
127 ioossicc 10735 . . . . . . . 8  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
128127, 116sseldi 3178 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  ( 0 [,] 1
) )
129 iirev 18427 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
130128, 129syl 15 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
131 lincmb01cmp 10777 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
1322, 4, 5, 130, 131syl31anc 1185 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B ) )
133126, 132eqeltrrd 2358 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B ) )
134 fveq2 5525 . . . . . 6  |-  ( x  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  ->  ( log `  x )  =  ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
135134negeqd 9046 . . . . 5  |-  ( x  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  ->  -u ( log `  x )  = 
-u ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
136 negex 9050 . . . . 5  |-  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  e. 
_V
137135, 19, 136fvmpt 5602 . . . 4  |-  ( ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) )
138133, 137syl 15 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) )
1391rpxrd 10391 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR* )
1403rpxrd 10391 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR* )
1412, 4, 5ltled 8967 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  <_  B )
142 lbicc2 10752 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
143139, 140, 141, 142syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  ( A [,] B
) )
144 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  A  ->  ( log `  x )  =  ( log `  A
) )
145144negeqd 9046 . . . . . . . . 9  |-  ( x  =  A  ->  -u ( log `  x )  = 
-u ( log `  A
) )
146 negex 9050 . . . . . . . . 9  |-  -u ( log `  A )  e. 
_V
147145, 19, 146fvmpt 5602 . . . . . . . 8  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
)  =  -u ( log `  A ) )
148143, 147syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
)  =  -u ( log `  A ) )
149148oveq2d 5874 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  =  ( T  x.  -u ( log `  A
) ) )
1501relogcld 19974 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  A )  e.  RR )
151150recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  A )  e.  CC )
152122, 151mulneg2d 9233 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  -u ( log `  A ) )  = 
-u ( T  x.  ( log `  A ) ) )
153149, 152eqtrd 2315 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  =  -u ( T  x.  ( log `  A ) ) )
154 ubicc2 10753 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
155139, 140, 141, 154syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  ( A [,] B
) )
156 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  B  ->  ( log `  x )  =  ( log `  B
) )
157156negeqd 9046 . . . . . . . . 9  |-  ( x  =  B  ->  -u ( log `  x )  = 
-u ( log `  B
) )
158 negex 9050 . . . . . . . . 9  |-  -u ( log `  B )  e. 
_V
159157, 19, 158fvmpt 5602 . . . . . . . 8  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  B
)  =  -u ( log `  B ) )
160155, 159syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  B
)  =  -u ( log `  B ) )
161160oveq2d 5874 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) )  =  ( ( 1  -  T )  x.  -u ( log `  B
) ) )
162 1re 8837 . . . . . . . . 9  |-  1  e.  RR
163 resubcl 9111 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
164162, 121, 163sylancr 644 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  RR )
165164recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  CC )
1663relogcld 19974 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  B )  e.  RR )
167166recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  B )  e.  CC )
168165, 167mulneg2d 9233 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  -u ( log `  B ) )  =  -u ( ( 1  -  T )  x.  ( log `  B
) ) )
169161, 168eqtrd 2315 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) )  =  -u (
( 1  -  T
)  x.  ( log `  B ) ) )
170153, 169oveq12d 5876 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) ) )  =  (
-u ( T  x.  ( log `  A ) )  +  -u (
( 1  -  T
)  x.  ( log `  B ) ) ) )
171121, 150remulcld 8863 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( log `  A ) )  e.  RR )
172171recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( log `  A ) )  e.  CC )
173164, 166remulcld 8863 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( log `  B ) )  e.  RR )
174173recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( log `  B ) )  e.  CC )
175172, 174negdid 9170 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  -u (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  =  ( -u ( T  x.  ( log `  A
) )  +  -u ( ( 1  -  T )  x.  ( log `  B ) ) ) )
176170, 175eqtr4d 2318 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) ) )  =  -u ( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) )
177118, 138, 1763brtr3d 4052 . 2  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  <  -u ( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) )
178171, 173readdcld 8862 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  e.  RR )
17915, 133sseldd 3181 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  RR+ )
180179relogcld 19974 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  e.  RR )
181178, 180ltnegd 9350 . 2  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <->  -u ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  -u (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) ) )
182177, 181mpbird 223 1  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   {cpr 3641   class class class wbr 4023    e. cmpt 4077    Po wpo 4312    Or wor 4313   ran crn 4690    |` cres 4691    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   RR+crp 10354   (,)cioo 10656   [,]cicc 10659   TopOpenctopn 13326   topGenctg 13342  ℂfldccnfld 16377   intcnt 16754   -cn->ccncf 18380    _D cdv 19213   logclog 19912
This theorem is referenced by:  amgmlem  20284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914
  Copyright terms: Public domain W3C validator