MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Unicode version

Theorem logcnlem4 20528
Description: Lemma for logcn 20530. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d  |-  D  =  ( CC  \  (  -oo (,] 0 ) )
logcnlem.s  |-  S  =  if ( A  e.  RR+ ,  A ,  ( abs `  ( Im
`  A ) ) )
logcnlem.t  |-  T  =  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )
logcnlem.a  |-  ( ph  ->  A  e.  D )
logcnlem.r  |-  ( ph  ->  R  e.  RR+ )
logcnlem.b  |-  ( ph  ->  B  e.  D )
logcnlem.l  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  if ( S  <_  T ,  S ,  T ) )
Assertion
Ref Expression
logcnlem4  |-  ( ph  ->  ( abs `  (
( Im `  ( log `  A ) )  -  ( Im `  ( log `  B ) ) ) )  < 
R )

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8  |-  ( ph  ->  A  e.  D )
2 logcn.d . . . . . . . . . 10  |-  D  =  ( CC  \  (  -oo (,] 0 ) )
32ellogdm 20522 . . . . . . . . 9  |-  ( A  e.  D  <->  ( A  e.  CC  /\  ( A  e.  RR  ->  A  e.  RR+ ) ) )
43simplbi 447 . . . . . . . 8  |-  ( A  e.  D  ->  A  e.  CC )
51, 4syl 16 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
62logdmn0 20523 . . . . . . . 8  |-  ( A  e.  D  ->  A  =/=  0 )
71, 6syl 16 . . . . . . 7  |-  ( ph  ->  A  =/=  0 )
85, 7logcld 20460 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  CC )
98imcld 11992 . . . . 5  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
109recnd 9106 . . . 4  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
11 logcnlem.b . . . . . . . 8  |-  ( ph  ->  B  e.  D )
122ellogdm 20522 . . . . . . . . 9  |-  ( B  e.  D  <->  ( B  e.  CC  /\  ( B  e.  RR  ->  B  e.  RR+ ) ) )
1312simplbi 447 . . . . . . . 8  |-  ( B  e.  D  ->  B  e.  CC )
1411, 13syl 16 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
152logdmn0 20523 . . . . . . . 8  |-  ( B  e.  D  ->  B  =/=  0 )
1611, 15syl 16 . . . . . . 7  |-  ( ph  ->  B  =/=  0 )
1714, 16logcld 20460 . . . . . 6  |-  ( ph  ->  ( log `  B
)  e.  CC )
1817imcld 11992 . . . . 5  |-  ( ph  ->  ( Im `  ( log `  B ) )  e.  RR )
1918recnd 9106 . . . 4  |-  ( ph  ->  ( Im `  ( log `  B ) )  e.  CC )
2010, 19abssubd 12247 . . 3  |-  ( ph  ->  ( abs `  (
( Im `  ( log `  A ) )  -  ( Im `  ( log `  B ) ) ) )  =  ( abs `  (
( Im `  ( log `  B ) )  -  ( Im `  ( log `  A ) ) ) ) )
2117, 8imsubd 12014 . . . . 5  |-  ( ph  ->  ( Im `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( ( Im
`  ( log `  B
) )  -  (
Im `  ( log `  A ) ) ) )
22 efsub 12693 . . . . . . . . . 10  |-  ( ( ( log `  B
)  e.  CC  /\  ( log `  A )  e.  CC )  -> 
( exp `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( ( exp `  ( log `  B
) )  /  ( exp `  ( log `  A
) ) ) )
2317, 8, 22syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( ( exp `  ( log `  B
) )  /  ( exp `  ( log `  A
) ) ) )
24 eflog 20466 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( exp `  ( log `  B ) )  =  B )
2514, 16, 24syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  ( log `  B ) )  =  B )
26 eflog 20466 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
275, 7, 26syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  ( log `  A ) )  =  A )
2825, 27oveq12d 6091 . . . . . . . . 9  |-  ( ph  ->  ( ( exp `  ( log `  B ) )  /  ( exp `  ( log `  A ) ) )  =  ( B  /  A ) )
2923, 28eqtrd 2467 . . . . . . . 8  |-  ( ph  ->  ( exp `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( B  /  A ) )
3014, 5, 7divcld 9782 . . . . . . . . 9  |-  ( ph  ->  ( B  /  A
)  e.  CC )
3114, 5, 16, 7divne0d 9798 . . . . . . . . 9  |-  ( ph  ->  ( B  /  A
)  =/=  0 )
3217, 8subcld 9403 . . . . . . . . . 10  |-  ( ph  ->  ( ( log `  B
)  -  ( log `  A ) )  e.  CC )
33 logcnlem.s . . . . . . . . . . . . 13  |-  S  =  if ( A  e.  RR+ ,  A ,  ( abs `  ( Im
`  A ) ) )
34 logcnlem.t . . . . . . . . . . . . 13  |-  T  =  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )
35 logcnlem.r . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  RR+ )
36 logcnlem.l . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  if ( S  <_  T ,  S ,  T ) )
372, 33, 34, 1, 35, 11, 36logcnlem3 20527 . . . . . . . . . . . 12  |-  ( ph  ->  ( -u pi  <  ( ( Im `  ( log `  B ) )  -  ( Im `  ( log `  A ) ) )  /\  (
( Im `  ( log `  B ) )  -  ( Im `  ( log `  A ) ) )  <_  pi ) )
3837simpld 446 . . . . . . . . . . 11  |-  ( ph  -> 
-u pi  <  (
( Im `  ( log `  B ) )  -  ( Im `  ( log `  A ) ) ) )
3938, 21breqtrrd 4230 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <  (
Im `  ( ( log `  B )  -  ( log `  A ) ) ) )
4037simprd 450 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  ( log `  B ) )  -  ( Im
`  ( log `  A
) ) )  <_  pi )
4121, 40eqbrtrd 4224 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  (
( log `  B
)  -  ( log `  A ) ) )  <_  pi )
42 ellogrn 20449 . . . . . . . . . 10  |-  ( ( ( log `  B
)  -  ( log `  A ) )  e. 
ran  log  <->  ( ( ( log `  B )  -  ( log `  A
) )  e.  CC  /\  -u pi  <  ( Im
`  ( ( log `  B )  -  ( log `  A ) ) )  /\  ( Im
`  ( ( log `  B )  -  ( log `  A ) ) )  <_  pi )
)
4332, 39, 41, 42syl3anbrc 1138 . . . . . . . . 9  |-  ( ph  ->  ( ( log `  B
)  -  ( log `  A ) )  e. 
ran  log )
44 logeftb 20470 . . . . . . . . 9  |-  ( ( ( B  /  A
)  e.  CC  /\  ( B  /  A
)  =/=  0  /\  ( ( log `  B
)  -  ( log `  A ) )  e. 
ran  log )  ->  (
( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) )  <-> 
( exp `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( B  /  A ) ) )
4530, 31, 43, 44syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) )  <-> 
( exp `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( B  /  A ) ) )
4629, 45mpbird 224 . . . . . . 7  |-  ( ph  ->  ( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) ) )
4746eqcomd 2440 . . . . . 6  |-  ( ph  ->  ( ( log `  B
)  -  ( log `  A ) )  =  ( log `  ( B  /  A ) ) )
4847fveq2d 5724 . . . . 5  |-  ( ph  ->  ( Im `  (
( log `  B
)  -  ( log `  A ) ) )  =  ( Im `  ( log `  ( B  /  A ) ) ) )
4921, 48eqtr3d 2469 . . . 4  |-  ( ph  ->  ( ( Im `  ( log `  B ) )  -  ( Im
`  ( log `  A
) ) )  =  ( Im `  ( log `  ( B  /  A ) ) ) )
5049fveq2d 5724 . . 3  |-  ( ph  ->  ( abs `  (
( Im `  ( log `  B ) )  -  ( Im `  ( log `  A ) ) ) )  =  ( abs `  (
Im `  ( log `  ( B  /  A
) ) ) ) )
5120, 50eqtrd 2467 . 2  |-  ( ph  ->  ( abs `  (
( Im `  ( log `  A ) )  -  ( Im `  ( log `  B ) ) ) )  =  ( abs `  (
Im `  ( log `  ( B  /  A
) ) ) ) )
5230, 31logcld 20460 . . . . . 6  |-  ( ph  ->  ( log `  ( B  /  A ) )  e.  CC )
5352imcld 11992 . . . . 5  |-  ( ph  ->  ( Im `  ( log `  ( B  /  A ) ) )  e.  RR )
5453recnd 9106 . . . 4  |-  ( ph  ->  ( Im `  ( log `  ( B  /  A ) ) )  e.  CC )
5554abscld 12230 . . 3  |-  ( ph  ->  ( abs `  (
Im `  ( log `  ( B  /  A
) ) ) )  e.  RR )
56 0re 9083 . . . . . . . . . . 11  |-  0  e.  RR
5756a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
58 1re 9082 . . . . . . . . . . 11  |-  1  e.  RR
595, 14subcld 9403 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  B
)  e.  CC )
6059abscld 12230 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  RR )
615, 7absrpcld 12242 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6260, 61rerpdivcld 10667 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  e.  RR )
63 resubcl 9357 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  e.  RR )  ->  (
1  -  ( ( abs `  ( A  -  B ) )  /  ( abs `  A
) ) )  e.  RR )
6458, 62, 63sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 1  -  (
( abs `  ( A  -  B )
)  /  ( abs `  A ) ) )  e.  RR )
6530recld 11991 . . . . . . . . . 10  |-  ( ph  ->  ( Re `  ( B  /  A ) )  e.  RR )
665abscld 12230 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( abs `  A
)  e.  RR )
6735rpred 10640 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  e.  RR )
68 1rp 10608 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR+
69 rpaddcl 10624 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR+  /\  R  e.  RR+ )  ->  (
1  +  R )  e.  RR+ )
7068, 35, 69sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  +  R
)  e.  RR+ )
7167, 70rerpdivcld 10667 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( R  /  (
1  +  R ) )  e.  RR )
7266, 71remulcld 9108 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )  e.  RR )
7334, 72syl5eqel 2519 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  RR )
74 rpre 10610 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  RR+  ->  A  e.  RR )
7574adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  A  e.  RR+ )  ->  A  e.  RR )
765imcld 11992 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Im `  A
)  e.  RR )
7776recnd 9106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( Im `  A
)  e.  CC )
7877abscld 12230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( abs `  (
Im `  A )
)  e.  RR )
7978adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  -.  A  e.  RR+ )  ->  ( abs `  ( Im `  A ) )  e.  RR )
8075, 79ifclda 3758 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  if ( A  e.  RR+ ,  A ,  ( abs `  ( Im
`  A ) ) )  e.  RR )
8133, 80syl5eqel 2519 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  RR )
82 ltmin 10773 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  ( A  -  B )
)  e.  RR  /\  S  e.  RR  /\  T  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <  if ( S  <_  T ,  S ,  T )  <->  ( ( abs `  ( A  -  B ) )  < 
S  /\  ( abs `  ( A  -  B
) )  <  T
) ) )
8360, 81, 73, 82syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  if ( S  <_  T ,  S ,  T )  <->  ( ( abs `  ( A  -  B ) )  < 
S  /\  ( abs `  ( A  -  B
) )  <  T
) ) )
8436, 83mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  S  /\  ( abs `  ( A  -  B ) )  <  T ) )
8584simprd 450 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  T )
8670rpred 10640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  +  R
)  e.  RR )
8767ltp1d 9933 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  R  <  ( R  +  1 ) )
8867recnd 9106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  R  e.  CC )
89 ax-1cn 9040 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
90 addcom 9244 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  CC  /\  1  e.  CC )  ->  ( R  +  1 )  =  ( 1  +  R ) )
9188, 89, 90sylancl 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( R  +  1 )  =  ( 1  +  R ) )
9287, 91breqtrd 4228 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  R  <  ( 1  +  R ) )
9367, 86, 92ltled 9213 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  R  <_  ( 1  +  R ) )
9486recnd 9106 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  +  R
)  e.  CC )
9594mulid1d 9097 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1  +  R )  x.  1 )  =  ( 1  +  R ) )
9693, 95breqtrrd 4230 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  <_  ( (
1  +  R )  x.  1 ) )
9758a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  1  e.  RR )
9867, 97, 70ledivmuld 10689 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( R  / 
( 1  +  R
) )  <_  1  <->  R  <_  ( ( 1  +  R )  x.  1 ) ) )
9996, 98mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( R  /  (
1  +  R ) )  <_  1 )
10071, 97, 61lemul2d 10680 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( R  / 
( 1  +  R
) )  <_  1  <->  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )  <_  ( ( abs `  A )  x.  1 ) ) )
10199, 100mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )  <_  ( ( abs `  A )  x.  1 ) )
10266recnd 9106 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( abs `  A
)  e.  CC )
103102mulid1d 9097 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  A
)  x.  1 )  =  ( abs `  A
) )
104101, 103breqtrd 4228 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  A
)  x.  ( R  /  ( 1  +  R ) ) )  <_  ( abs `  A
) )
10534, 104syl5eqbr 4237 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  <_  ( abs `  A ) )
10660, 73, 66, 85, 105ltletrd 9222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( abs `  A ) )
107106, 103breqtrrd 4230 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( ( abs `  A )  x.  1 ) )
10860, 97, 61ltdivmuld 10687 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) )  <  1  <->  ( abs `  ( A  -  B
) )  <  (
( abs `  A
)  x.  1 ) ) )
109107, 108mpbird 224 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  <  1 )
110 posdif 9513 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  <  1  <->  0  <  (
1  -  ( ( abs `  ( A  -  B ) )  /  ( abs `  A
) ) ) ) )
11162, 58, 110sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) )  <  1  <->  0  <  ( 1  -  ( ( abs `  ( A  -  B ) )  /  ( abs `  A
) ) ) ) )
112109, 111mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  -  ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) ) ) )
11359, 5, 7divcld 9782 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  -  B )  /  A
)  e.  CC )
114113releabsd 12245 . . . . . . . . . . . 12  |-  ( ph  ->  ( Re `  (
( A  -  B
)  /  A ) )  <_  ( abs `  ( ( A  -  B )  /  A
) ) )
1155, 14, 5, 7divsubdird 9821 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  -  B )  /  A
)  =  ( ( A  /  A )  -  ( B  /  A ) ) )
1165, 7dividd 9780 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  /  A
)  =  1 )
117116oveq1d 6088 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  /  A )  -  ( B  /  A ) )  =  ( 1  -  ( B  /  A
) ) )
118115, 117eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  -  B )  /  A
)  =  ( 1  -  ( B  /  A ) ) )
119118fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Re `  (
( A  -  B
)  /  A ) )  =  ( Re
`  ( 1  -  ( B  /  A
) ) ) )
120 resub 11924 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( B  /  A
)  e.  CC )  ->  ( Re `  ( 1  -  ( B  /  A ) ) )  =  ( ( Re `  1 )  -  ( Re `  ( B  /  A
) ) ) )
12189, 30, 120sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Re `  (
1  -  ( B  /  A ) ) )  =  ( ( Re `  1 )  -  ( Re `  ( B  /  A
) ) ) )
122119, 121eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Re `  (
( A  -  B
)  /  A ) )  =  ( ( Re `  1 )  -  ( Re `  ( B  /  A
) ) ) )
123 re1 11951 . . . . . . . . . . . . . 14  |-  ( Re
`  1 )  =  1
124123oveq1i 6083 . . . . . . . . . . . . 13  |-  ( ( Re `  1 )  -  ( Re `  ( B  /  A
) ) )  =  ( 1  -  (
Re `  ( B  /  A ) ) )
125122, 124syl6eq 2483 . . . . . . . . . . . 12  |-  ( ph  ->  ( Re `  (
( A  -  B
)  /  A ) )  =  ( 1  -  ( Re `  ( B  /  A
) ) ) )
12659, 5, 7absdivd 12249 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
( A  -  B
)  /  A ) )  =  ( ( abs `  ( A  -  B ) )  /  ( abs `  A
) ) )
127114, 125, 1263brtr3d 4233 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  (
Re `  ( B  /  A ) ) )  <_  ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) ) )
12897, 65, 62, 127subled 9621 . . . . . . . . . 10  |-  ( ph  ->  ( 1  -  (
( abs `  ( A  -  B )
)  /  ( abs `  A ) ) )  <_  ( Re `  ( B  /  A
) ) )
12957, 64, 65, 112, 128ltletrd 9222 . . . . . . . . 9  |-  ( ph  ->  0  <  ( Re
`  ( B  /  A ) ) )
130 argregt0 20497 . . . . . . . . 9  |-  ( ( ( B  /  A
)  e.  CC  /\  0  <  ( Re `  ( B  /  A
) ) )  -> 
( Im `  ( log `  ( B  /  A ) ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )
13130, 129, 130syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  ( B  /  A ) ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )
132 cosq14gt0 20410 . . . . . . . 8  |-  ( ( Im `  ( log `  ( B  /  A
) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  ->  0  <  ( cos `  (
Im `  ( log `  ( B  /  A
) ) ) ) )
133131, 132syl 16 . . . . . . 7  |-  ( ph  ->  0  <  ( cos `  ( Im `  ( log `  ( B  /  A ) ) ) ) )
134133gt0ne0d 9583 . . . . . 6  |-  ( ph  ->  ( cos `  (
Im `  ( log `  ( B  /  A
) ) ) )  =/=  0 )
13553, 134retancld 12738 . . . . 5  |-  ( ph  ->  ( tan `  (
Im `  ( log `  ( B  /  A
) ) ) )  e.  RR )
136135recnd 9106 . . . 4  |-  ( ph  ->  ( tan `  (
Im `  ( log `  ( B  /  A
) ) ) )  e.  CC )
137136abscld 12230 . . 3  |-  ( ph  ->  ( abs `  ( tan `  ( Im `  ( log `  ( B  /  A ) ) ) ) )  e.  RR )
138 tanabsge 20406 . . . 4  |-  ( ( Im `  ( log `  ( B  /  A
) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  ->  ( abs `  ( Im `  ( log `  ( B  /  A ) ) ) )  <_  ( abs `  ( tan `  (
Im `  ( log `  ( B  /  A
) ) ) ) ) )
139131, 138syl 16 . . 3  |-  ( ph  ->  ( abs `  (
Im `  ( log `  ( B  /  A
) ) ) )  <_  ( abs `  ( tan `  ( Im `  ( log `  ( B  /  A ) ) ) ) ) )
140129gt0ne0d 9583 . . . . . . 7  |-  ( ph  ->  ( Re `  ( B  /  A ) )  =/=  0 )
141 tanarg 20506 . . . . . . 7  |-  ( ( ( B  /  A
)  e.  CC  /\  ( Re `  ( B  /  A ) )  =/=  0 )  -> 
( tan `  (
Im `  ( log `  ( B  /  A
) ) ) )  =  ( ( Im
`  ( B  /  A ) )  / 
( Re `  ( B  /  A ) ) ) )
14230, 140, 141syl2anc 643 . . . . . 6  |-  ( ph  ->  ( tan `  (
Im `  ( log `  ( B  /  A
) ) ) )  =  ( ( Im
`  ( B  /  A ) )  / 
( Re `  ( B  /  A ) ) ) )
143142fveq2d 5724 . . . . 5  |-  ( ph  ->  ( abs `  ( tan `  ( Im `  ( log `  ( B  /  A ) ) ) ) )  =  ( abs `  (
( Im `  ( B  /  A ) )  /  ( Re `  ( B  /  A
) ) ) ) )
14430imcld 11992 . . . . . . 7  |-  ( ph  ->  ( Im `  ( B  /  A ) )  e.  RR )
145144recnd 9106 . . . . . 6  |-  ( ph  ->  ( Im `  ( B  /  A ) )  e.  CC )
14665recnd 9106 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  /  A ) )  e.  CC )
147145, 146, 140absdivd 12249 . . . . 5  |-  ( ph  ->  ( abs `  (
( Im `  ( B  /  A ) )  /  ( Re `  ( B  /  A
) ) ) )  =  ( ( abs `  ( Im `  ( B  /  A ) ) )  /  ( abs `  ( Re `  ( B  /  A ) ) ) ) )
14857, 65, 129ltled 9213 . . . . . . 7  |-  ( ph  ->  0  <_  ( Re `  ( B  /  A
) ) )
14965, 148absidd 12217 . . . . . 6  |-  ( ph  ->  ( abs `  (
Re `  ( B  /  A ) ) )  =  ( Re `  ( B  /  A
) ) )
150149oveq2d 6089 . . . . 5  |-  ( ph  ->  ( ( abs `  (
Im `  ( B  /  A ) ) )  /  ( abs `  (
Re `  ( B  /  A ) ) ) )  =  ( ( abs `  ( Im
`  ( B  /  A ) ) )  /  ( Re `  ( B  /  A
) ) ) )
151143, 147, 1503eqtrd 2471 . . . 4  |-  ( ph  ->  ( abs `  ( tan `  ( Im `  ( log `  ( B  /  A ) ) ) ) )  =  ( ( abs `  (
Im `  ( B  /  A ) ) )  /  ( Re `  ( B  /  A
) ) ) )
152145abscld 12230 . . . . . 6  |-  ( ph  ->  ( abs `  (
Im `  ( B  /  A ) ) )  e.  RR )
15365, 67remulcld 9108 . . . . . 6  |-  ( ph  ->  ( ( Re `  ( B  /  A
) )  x.  R
)  e.  RR )
15414, 5subcld 9403 . . . . . . . . 9  |-  ( ph  ->  ( B  -  A
)  e.  CC )
155154, 5, 7divcld 9782 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  A
)  e.  CC )
156 absimle 12106 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  A )  e.  CC  ->  ( abs `  ( Im `  ( ( B  -  A )  /  A
) ) )  <_ 
( abs `  (
( B  -  A
)  /  A ) ) )
157155, 156syl 16 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  ( ( B  -  A )  /  A ) ) )  <_  ( abs `  (
( B  -  A
)  /  A ) ) )
15814, 5, 5, 7divsubdird 9821 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  -  A )  /  A
)  =  ( ( B  /  A )  -  ( A  /  A ) ) )
159116oveq2d 6089 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  /  A )  -  ( A  /  A ) )  =  ( ( B  /  A )  - 
1 ) )
160158, 159eqtrd 2467 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  /  A
)  =  ( ( B  /  A )  -  1 ) )
161160fveq2d 5724 . . . . . . . . 9  |-  ( ph  ->  ( Im `  (
( B  -  A
)  /  A ) )  =  ( Im
`  ( ( B  /  A )  - 
1 ) ) )
162 imsub 11932 . . . . . . . . . . 11  |-  ( ( ( B  /  A
)  e.  CC  /\  1  e.  CC )  ->  ( Im `  (
( B  /  A
)  -  1 ) )  =  ( ( Im `  ( B  /  A ) )  -  ( Im ` 
1 ) ) )
16330, 89, 162sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  (
( B  /  A
)  -  1 ) )  =  ( ( Im `  ( B  /  A ) )  -  ( Im ` 
1 ) ) )
164 im1 11952 . . . . . . . . . . 11  |-  ( Im
`  1 )  =  0
165164oveq2i 6084 . . . . . . . . . 10  |-  ( ( Im `  ( B  /  A ) )  -  ( Im ` 
1 ) )  =  ( ( Im `  ( B  /  A
) )  -  0 )
166163, 165syl6eq 2483 . . . . . . . . 9  |-  ( ph  ->  ( Im `  (
( B  /  A
)  -  1 ) )  =  ( ( Im `  ( B  /  A ) )  -  0 ) )
167145subid1d 9392 . . . . . . . . 9  |-  ( ph  ->  ( ( Im `  ( B  /  A
) )  -  0 )  =  ( Im
`  ( B  /  A ) ) )
168161, 166, 1673eqtrrd 2472 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( B  /  A ) )  =  ( Im `  ( ( B  -  A )  /  A
) ) )
169168fveq2d 5724 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  ( B  /  A ) ) )  =  ( abs `  (
Im `  ( ( B  -  A )  /  A ) ) ) )
1705, 14abssubd 12247 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
171170oveq1d 6088 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  =  ( ( abs `  ( B  -  A )
)  /  ( abs `  A ) ) )
172154, 5, 7absdivd 12249 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
( B  -  A
)  /  A ) )  =  ( ( abs `  ( B  -  A ) )  /  ( abs `  A
) ) )
173171, 172eqtr4d 2470 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  =  ( abs `  (
( B  -  A
)  /  A ) ) )
174157, 169, 1733brtr4d 4234 . . . . . 6  |-  ( ph  ->  ( abs `  (
Im `  ( B  /  A ) ) )  <_  ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) ) )
17566, 60resubcld 9457 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  A
)  -  ( abs `  ( A  -  B
) ) )  e.  RR )
176175, 67remulcld 9108 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  x.  R )  e.  RR )
17766, 153remulcld 9108 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  A
)  x.  ( ( Re `  ( B  /  A ) )  x.  R ) )  e.  RR )
17860recnd 9106 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  CC )
17989a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
180178, 179, 88adddid 9104 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  x.  ( 1  +  R ) )  =  ( ( ( abs `  ( A  -  B ) )  x.  1 )  +  ( ( abs `  ( A  -  B )
)  x.  R ) ) )
181178mulid1d 9097 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  x.  1 )  =  ( abs `  ( A  -  B )
) )
182181oveq1d 6088 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  x.  1 )  +  ( ( abs `  ( A  -  B ) )  x.  R ) )  =  ( ( abs `  ( A  -  B
) )  +  ( ( abs `  ( A  -  B )
)  x.  R ) ) )
183180, 182eqtrd 2467 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  x.  ( 1  +  R ) )  =  ( ( abs `  ( A  -  B
) )  +  ( ( abs `  ( A  -  B )
)  x.  R ) ) )
18470rpne0d 10645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  +  R
)  =/=  0 )
185102, 88, 94, 184divassd 9817 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  A )  x.  R
)  /  ( 1  +  R ) )  =  ( ( abs `  A )  x.  ( R  /  ( 1  +  R ) ) ) )
186185, 34syl6eqr 2485 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  A )  x.  R
)  /  ( 1  +  R ) )  =  T )
18785, 186breqtrrd 4230 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( (
( abs `  A
)  x.  R )  /  ( 1  +  R ) ) )
18866, 67remulcld 9108 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  A
)  x.  R )  e.  RR )
18960, 188, 70ltmuldivd 10683 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  x.  (
1  +  R ) )  <  ( ( abs `  A )  x.  R )  <->  ( abs `  ( A  -  B
) )  <  (
( ( abs `  A
)  x.  R )  /  ( 1  +  R ) ) ) )
190187, 189mpbird 224 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  x.  ( 1  +  R ) )  <  ( ( abs `  A )  x.  R
) )
191183, 190eqbrtrrd 4226 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  +  ( ( abs `  ( A  -  B ) )  x.  R ) )  <  ( ( abs `  A )  x.  R
) )
19260, 67remulcld 9108 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  x.  R )  e.  RR )
19360, 192, 188ltaddsubd 9618 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  +  ( ( abs `  ( A  -  B )
)  x.  R ) )  <  ( ( abs `  A )  x.  R )  <->  ( abs `  ( A  -  B
) )  <  (
( ( abs `  A
)  x.  R )  -  ( ( abs `  ( A  -  B
) )  x.  R
) ) ) )
194191, 193mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( (
( abs `  A
)  x.  R )  -  ( ( abs `  ( A  -  B
) )  x.  R
) ) )
195102, 178, 88subdird 9482 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  x.  R )  =  ( ( ( abs `  A )  x.  R
)  -  ( ( abs `  ( A  -  B ) )  x.  R ) ) )
196194, 195breqtrrd 4230 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( (
( abs `  A
)  -  ( abs `  ( A  -  B
) ) )  x.  R ) )
19761rpne0d 10645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  A
)  =/=  0 )
198102, 178, 102, 197divsubdird 9821 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  /  ( abs `  A
) )  =  ( ( ( abs `  A
)  /  ( abs `  A ) )  -  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) ) ) )
199102, 197dividd 9780 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  A
)  /  ( abs `  A ) )  =  1 )
200199oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  A )  /  ( abs `  A ) )  -  ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) ) )  =  ( 1  -  ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) ) ) )
201198, 200eqtrd 2467 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  /  ( abs `  A
) )  =  ( 1  -  ( ( abs `  ( A  -  B ) )  /  ( abs `  A
) ) ) )
202201, 128eqbrtrd 4224 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  /  ( abs `  A
) )  <_  (
Re `  ( B  /  A ) ) )
203175, 65, 61ledivmuld 10689 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  A )  -  ( abs `  ( A  -  B )
) )  /  ( abs `  A ) )  <_  ( Re `  ( B  /  A
) )  <->  ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  <_  ( ( abs `  A )  x.  ( Re `  ( B  /  A ) ) ) ) )
204202, 203mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  A
)  -  ( abs `  ( A  -  B
) ) )  <_ 
( ( abs `  A
)  x.  ( Re
`  ( B  /  A ) ) ) )
20566, 65remulcld 9108 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  A
)  x.  ( Re
`  ( B  /  A ) ) )  e.  RR )
206175, 205, 35lemul1d 10679 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  <_  ( ( abs `  A )  x.  (
Re `  ( B  /  A ) ) )  <-> 
( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  x.  R )  <_ 
( ( ( abs `  A )  x.  (
Re `  ( B  /  A ) ) )  x.  R ) ) )
207204, 206mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  x.  R )  <_ 
( ( ( abs `  A )  x.  (
Re `  ( B  /  A ) ) )  x.  R ) )
208102, 146, 88mulassd 9103 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  A )  x.  (
Re `  ( B  /  A ) ) )  x.  R )  =  ( ( abs `  A
)  x.  ( ( Re `  ( B  /  A ) )  x.  R ) ) )
209207, 208breqtrd 4228 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  A )  -  ( abs `  ( A  -  B ) ) )  x.  R )  <_ 
( ( abs `  A
)  x.  ( ( Re `  ( B  /  A ) )  x.  R ) ) )
21060, 176, 177, 196, 209ltletrd 9222 . . . . . . 7  |-  ( ph  ->  ( abs `  ( A  -  B )
)  <  ( ( abs `  A )  x.  ( ( Re `  ( B  /  A
) )  x.  R
) ) )
21160, 153, 61ltdivmuld 10687 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  ( A  -  B
) )  /  ( abs `  A ) )  <  ( ( Re
`  ( B  /  A ) )  x.  R )  <->  ( abs `  ( A  -  B
) )  <  (
( abs `  A
)  x.  ( ( Re `  ( B  /  A ) )  x.  R ) ) ) )
212210, 211mpbird 224 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  /  ( abs `  A ) )  < 
( ( Re `  ( B  /  A
) )  x.  R
) )
213152, 62, 153, 174, 212lelttrd 9220 . . . . 5  |-  ( ph  ->  ( abs `  (
Im `  ( B  /  A ) ) )  <  ( ( Re
`  ( B  /  A ) )  x.  R ) )
214 ltdivmul 9874 . . . . . 6  |-  ( ( ( abs `  (
Im `  ( B  /  A ) ) )  e.  RR  /\  R  e.  RR  /\  ( ( Re `  ( B  /  A ) )  e.  RR  /\  0  <  ( Re `  ( B  /  A ) ) ) )  ->  (
( ( abs `  (
Im `  ( B  /  A ) ) )  /  ( Re `  ( B  /  A
) ) )  < 
R  <->  ( abs `  (
Im `  ( B  /  A ) ) )  <  ( ( Re
`  ( B  /  A ) )  x.  R ) ) )
215152, 67, 65, 129, 214syl112anc 1188 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( Im `  ( B  /  A ) ) )  /  ( Re
`  ( B  /  A ) ) )  <  R  <->  ( abs `  ( Im `  ( B  /  A ) ) )  <  ( ( Re `  ( B  /  A ) )  x.  R ) ) )
216213, 215mpbird 224 . . . 4  |-  ( ph  ->  ( ( abs `  (
Im `  ( B  /  A ) ) )  /  ( Re `  ( B  /  A
) ) )  < 
R )
217151, 216eqbrtrd 4224 . . 3  |-  ( ph  ->  ( abs `  ( tan `  ( Im `  ( log `  ( B  /  A ) ) ) ) )  < 
R )
21855, 137, 67, 139, 217lelttrd 9220 . 2  |-  ( ph  ->  ( abs `  (
Im `  ( log `  ( B  /  A
) ) ) )  <  R )
21951, 218eqbrtrd 4224 1  |-  ( ph  ->  ( abs `  (
( Im `  ( log `  A ) )  -  ( Im `  ( log `  B ) ) ) )  < 
R )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    \ cdif 3309   ifcif 3731   class class class wbr 4204   ran crn 4871   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    -oocmnf 9110    < clt 9112    <_ cle 9113    - cmin 9283   -ucneg 9284    / cdiv 9669   2c2 10041   RR+crp 10604   (,)cioo 10908   (,]cioc 10909   Recre 11894   Imcim 11895   abscabs 12031   expce 12656   cosccos 12659   tanctan 12660   picpi 12661   logclog 20444
This theorem is referenced by:  logcnlem5  20529
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-tan 12666  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446
  Copyright terms: Public domain W3C validator