MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logef Unicode version

Theorem logef 20345
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
logef  |-  ( A  e.  ran  log  ->  ( log `  ( exp `  A ) )  =  A )

Proof of Theorem logef
StepHypRef Expression
1 dflog2 20327 . . 3  |-  log  =  `' ( exp  |`  ran  log )
21fveq1i 5671 . 2  |-  ( log `  ( ( exp  |`  ran  log ) `  A )
)  =  ( `' ( exp  |`  ran  log ) `  ( ( exp  |`  ran  log ) `  A ) )
3 fvres 5687 . . 3  |-  ( A  e.  ran  log  ->  ( ( exp  |`  ran  log ) `  A )  =  ( exp `  A
) )
43fveq2d 5674 . 2  |-  ( A  e.  ran  log  ->  ( log `  ( ( exp  |`  ran  log ) `  A ) )  =  ( log `  ( exp `  A ) ) )
5 eff1o2 20330 . . 3  |-  ( exp  |`  ran  log ) : ran  log -1-1-onto-> ( CC  \  {
0 } )
6 f1ocnvfv1 5955 . . 3  |-  ( ( ( exp  |`  ran  log ) : ran  log -1-1-onto-> ( CC  \  {
0 } )  /\  A  e.  ran  log )  ->  ( `' ( exp  |`  ran  log ) `  ( ( exp  |`  ran  log ) `  A )
)  =  A )
75, 6mpan 652 . 2  |-  ( A  e.  ran  log  ->  ( `' ( exp  |`  ran  log ) `  ( ( exp  |`  ran  log ) `  A ) )  =  A )
82, 4, 73eqtr3a 2445 1  |-  ( A  e.  ran  log  ->  ( log `  ( exp `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717    \ cdif 3262   {csn 3759   `'ccnv 4819   ran crn 4821    |` cres 4822   -1-1-onto->wf1o 5395   ` cfv 5396   CCcc 8923   0cc0 8925   expce 12593   logclog 20321
This theorem is referenced by:  relogef  20346  logneg  20351  logimul  20378  logneg2  20379  logmul2  20380  logdiv2  20381  dvloglem  20408  logf1o2  20410  logrec  20530  asinsin  20601  asin1  20603  efiatan2  20626  atantan  20632
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ioc 10855  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-mod 11180  df-seq 11253  df-exp 11312  df-fac 11496  df-bc 11523  df-hash 11548  df-shft 11811  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-limsup 12194  df-clim 12211  df-rlim 12212  df-sum 12409  df-ef 12599  df-sin 12601  df-cos 12602  df-pi 12604  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lp 17125  df-perf 17126  df-cn 17215  df-cnp 17216  df-haus 17303  df-tx 17517  df-hmeo 17710  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-tms 18263  df-cncf 18781  df-limc 19622  df-dv 19623  df-log 20323
  Copyright terms: Public domain W3C validator