MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Structured version   Unicode version

Theorem logfac2 21001
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem logfac2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flge0nn0 11225 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2 logfac 20495 . . 3  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
31, 2syl 16 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
) )
4 fzfid 11312 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1 ... ( |_ `  A ) )  e.  Fin )
5 fzfid 11312 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  A
) )  e.  Fin )
6 ssrab2 3428 . . . . 5  |-  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  C_  ( 1 ... ( |_ `  A
) )
7 ssfi 7329 . . . . 5  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  C_  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  e.  Fin )
85, 6, 7sylancl 644 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  e.  Fin )
9 flcl 11204 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
109adantr 452 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  ZZ )
11 fznn 11115 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( |_ `  A
) ) ) )
1210, 11syl 16 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( k  e.  ( 1 ... ( |_
`  A ) )  <-> 
( k  e.  NN  /\  k  <_  ( |_ `  A ) ) ) )
1312anbi1d 686 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) )  <->  ( (
k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
14 nnre 10007 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR )
1514ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  e.  RR )
16 elfznn 11080 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1716ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  e.  NN )
1817nnred 10015 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  e.  RR )
19 reflcl 11205 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
2019ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  ( |_ `  A )  e.  RR )
21 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  ||  n
)
22 nnz 10303 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
2322ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  e.  ZZ )
24 dvdsle 12895 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  NN )  ->  ( k  ||  n  ->  k  <_  n )
)
2523, 17, 24syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  ( k  ||  n  ->  k  <_  n
) )
2621, 25mpd 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  <_  n
)
27 elfzle2 11061 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  <_  ( |_ `  A
) )
2827ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  n  <_  ( |_ `  A ) )
2915, 18, 20, 26, 28letrd 9227 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n ) )  ->  k  <_  ( |_ `  A ) )
3029expl 602 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) )  -> 
k  <_  ( |_ `  A ) ) )
3130pm4.71rd 617 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) )  <->  ( k  <_  ( |_ `  A
)  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) ) ) )
32 an12 773 . . . . . . 7  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) )  <->  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) )
33 anass 631 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) )  <-> 
( k  e.  NN  /\  ( k  <_  ( |_ `  A )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
34 an12 773 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( k  <_  ( |_ `  A )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) )  <->  ( k  <_ 
( |_ `  A
)  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_ `  A
) )  /\  k  ||  n ) ) ) )
3533, 34bitri 241 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) )  <-> 
( k  <_  ( |_ `  A )  /\  ( k  e.  NN  /\  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  k  ||  n
) ) ) )
3631, 32, 353bitr4g 280 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) )  <->  ( (
k  e.  NN  /\  k  <_  ( |_ `  A ) )  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  k  ||  n ) ) ) )
3713, 36bitr4d 248 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) ) ) )
38 breq2 4216 . . . . . . 7  |-  ( x  =  n  ->  (
k  ||  x  <->  k  ||  n ) )
3938elrab 3092 . . . . . 6  |-  ( n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
<->  ( n  e.  ( 1 ... ( |_
`  A ) )  /\  k  ||  n
) )
4039anbi2i 676 . . . . 5  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  ||  n
) ) )
41 breq1 4215 . . . . . . 7  |-  ( x  =  k  ->  (
x  ||  n  <->  k  ||  n ) )
4241elrab 3092 . . . . . 6  |-  ( k  e.  { x  e.  NN  |  x  ||  n }  <->  ( k  e.  NN  /\  k  ||  n ) )
4342anbi2i 676 . . . . 5  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  e.  { x  e.  NN  |  x  ||  n } )  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  ( k  e.  NN  /\  k  ||  n ) ) )
4437, 40, 433bitr4g 280 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  <->  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  k  e.  {
x  e.  NN  |  x  ||  n } ) ) )
45 elfznn 11080 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
4645adantl 453 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
47 vmacl 20901 . . . . . . 7  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
4846, 47syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  (Λ `  k )  e.  RR )
4948recnd 9114 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  (Λ `  k )  e.  CC )
5049adantrr 698 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( k  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )  ->  (Λ `  k )  e.  CC )
514, 4, 8, 44, 50fsumcom2 12558 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  (Λ `  k )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ k  e.  {
x  e.  NN  |  x  ||  n }  (Λ `  k ) )
52 fsumconst 12573 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( |_
`  A ) )  |  k  ||  x }  e.  Fin  /\  (Λ `  k )  e.  CC )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  x.  (Λ `  k
) ) )
538, 49, 52syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  x.  (Λ `  k
) ) )
54 fzfid 11312 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  k ) ) )  e.  Fin )
55 simpll 731 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
56 eqid 2436 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  k ) ) )  |->  ( k  x.  m ) )  =  ( m  e.  ( 1 ... ( |_
`  ( A  / 
k ) ) ) 
|->  ( k  x.  m
) )
5755, 46, 56dvdsflf1o 20972 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( m  e.  ( 1 ... ( |_ `  ( A  / 
k ) ) ) 
|->  ( k  x.  m
) ) : ( 1 ... ( |_
`  ( A  / 
k ) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)
58 f1oeng 7126 . . . . . . . . 9  |-  ( ( ( 1 ... ( |_ `  ( A  / 
k ) ) )  e.  Fin  /\  (
m  e.  ( 1 ... ( |_ `  ( A  /  k
) ) )  |->  ( k  x.  m ) ) : ( 1 ... ( |_ `  ( A  /  k
) ) ) -1-1-onto-> { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )  ->  (
1 ... ( |_ `  ( A  /  k
) ) )  ~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)
5954, 57, 58syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  k ) ) )  ~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } )
60 hasheni 11632 . . . . . . . 8  |-  ( ( 1 ... ( |_
`  ( A  / 
k ) ) ) 
~~  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )
6159, 60syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
) )
62 simpl 444 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
63 nndivre 10035 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  k  e.  NN )  ->  ( A  /  k
)  e.  RR )
6462, 45, 63syl2an 464 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( A  / 
k )  e.  RR )
65 nngt0 10029 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  0  <  k )
6614, 65jca 519 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
6745, 66syl 16 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  (
k  e.  RR  /\  0  <  k ) )
68 divge0 9879 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( k  e.  RR  /\  0  <  k ) )  ->  0  <_  ( A  /  k ) )
6967, 68sylan2 461 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  0  <_  ( A  /  k ) )
70 flge0nn0 11225 . . . . . . . . 9  |-  ( ( ( A  /  k
)  e.  RR  /\  0  <_  ( A  / 
k ) )  -> 
( |_ `  ( A  /  k ) )  e.  NN0 )
7164, 69, 70syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  NN0 )
72 hashfz1 11630 . . . . . . . 8  |-  ( ( |_ `  ( A  /  k ) )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  ( A  / 
k ) ) ) )  =  ( |_
`  ( A  / 
k ) ) )
7371, 72syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  (
1 ... ( |_ `  ( A  /  k
) ) ) )  =  ( |_ `  ( A  /  k
) ) )
7461, 73eqtr3d 2470 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( # `  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }
)  =  ( |_
`  ( A  / 
k ) ) )
7574oveq1d 6096 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( ( # `  { x  e.  ( 1 ... ( |_
`  A ) )  |  k  ||  x } )  x.  (Λ `  k ) )  =  ( ( |_ `  ( A  /  k
) )  x.  (Λ `  k ) ) )
7664flcld 11207 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  ZZ )
7776zcnd 10376 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( |_ `  ( A  /  k
) )  e.  CC )
7877, 49mulcomd 9109 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  ( ( |_
`  ( A  / 
k ) )  x.  (Λ `  k )
)  =  ( (Λ `  k )  x.  ( |_ `  ( A  / 
k ) ) ) )
7953, 75, 783eqtrd 2472 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  k  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  {
x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x } 
(Λ `  k )  =  ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
8079sumeq2dv 12497 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ n  e.  { x  e.  ( 1 ... ( |_ `  A ) )  |  k  ||  x }  (Λ `  k )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
8116adantl 453 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  n  e.  (
1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
82 vmasum 21000 . . . . 5  |-  ( n  e.  NN  ->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
(Λ `  k )  =  ( log `  n
) )
8381, 82syl 16 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  n  e.  (
1 ... ( |_ `  A ) ) )  ->  sum_ k  e.  {
x  e.  NN  |  x  ||  n }  (Λ `  k )  =  ( log `  n ) )
8483sumeq2dv 12497 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) sum_ k  e.  { x  e.  NN  |  x  ||  n }  (Λ `  k
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
8551, 80, 843eqtr3d 2476 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  k )  x.  ( |_ `  ( A  /  k ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
863, 85eqtr4d 2471 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ k  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  k
)  x.  ( |_
`  ( A  / 
k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081    ~~ cen 7106   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   NNcn 10000   NN0cn0 10221   ZZcz 10282   ...cfz 11043   |_cfl 11201   !cfa 11566   #chash 11618   sum_csu 12479    || cdivides 12852   logclog 20452  Λcvma 20874
This theorem is referenced by:  vmadivsum  21176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-vma 20880
  Copyright terms: Public domain W3C validator