MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Structured version   Unicode version

Theorem logfaclbnd 21011
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )

Proof of Theorem logfaclbnd
Dummy variables  d  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 10625 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  CC )
21times2d 10216 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  2 )  =  ( A  +  A
) )
32oveq2d 6100 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2
) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
4 relogcl 20478 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
54recnd 9119 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
6 2cn 10075 . . . . 5  |-  2  e.  CC
76a1i 11 . . . 4  |-  ( A  e.  RR+  ->  2  e.  CC )
81, 5, 7subdid 9494 . . 3  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2 ) ) )
9 rpre 10623 . . . . . 6  |-  ( A  e.  RR+  ->  A  e.  RR )
109, 4remulcld 9121 . . . . 5  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  RR )
1110recnd 9119 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  CC )
1211, 1, 1subsub4d 9447 . . 3  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
133, 8, 123eqtr4d 2480 . 2  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A ) )
1410, 9resubcld 9470 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  e.  RR )
15 fzfid 11317 . . . . 5  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
16 fzfid 11317 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
17 elfznn 11085 . . . . . . . 8  |-  ( d  e.  ( 1 ... n )  ->  d  e.  NN )
1817adantl 454 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  d  e.  NN )
1918nnrecred 10050 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  RR )
2016, 19fsumrecl 12533 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  e.  RR )
2115, 20fsumrecl 12533 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  e.  RR )
22 rprege0 10631 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
23 flge0nn0 11230 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2422, 23syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
25 faccl 11581 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2624, 25syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2726nnrpd 10652 . . . . . 6  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  RR+ )
2827relogcld 20523 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
2928, 9readdcld 9120 . . . 4  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  A )  e.  RR )
30 elfznn 11085 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
3130adantl 454 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
3231nnrecred 10050 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR )
3315, 32fsumrecl 12533 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
349, 33remulcld 9121 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  e.  RR )
35 reflcl 11210 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
369, 35syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
3734, 36resubcld 9470 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  e.  RR )
38 harmoniclbnd 20852 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )
39 rpregt0 10630 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
40 lemul2 9868 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( log `  A
)  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
414, 33, 39, 40syl3anc 1185 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
4238, 41mpbid 203 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) ) )
43 flle 11213 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
449, 43syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
4510, 36, 34, 9, 42, 44le2subd 9650 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d ) )  -  ( |_
`  A ) ) )
4630nnrecred 10050 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  (
1  /  d )  e.  RR )
47 remulcl 9080 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( 1  /  d
)  e.  RR )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
489, 46, 47syl2an 465 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
49 peano2rem 9372 . . . . . . . 8  |-  ( ( A  x.  ( 1  /  d ) )  e.  RR  ->  (
( A  x.  (
1  /  d ) )  -  1 )  e.  RR )
5048, 49syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  e.  RR )
51 fzfid 11317 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d ... ( |_ `  A
) )  e.  Fin )
5232adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  n  e.  ( d ... ( |_
`  A ) ) )  ->  ( 1  /  d )  e.  RR )
5351, 52fsumrecl 12533 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
549adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
5554, 35syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  RR )
56 peano2re 9244 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
5755, 56syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( |_ `  A )  +  1 )  e.  RR )
5831nnred 10020 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR )
59 fllep1 11215 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
609, 59syl 16 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
6160adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  <_  ( ( |_ `  A
)  +  1 ) )
6254, 57, 58, 61lesub1dd 9647 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  <_ 
( ( ( |_
`  A )  +  1 )  -  d
) )
6354, 58resubcld 9470 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  e.  RR )
6457, 58resubcld 9470 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  e.  RR )
6531nnrpd 10652 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
6665rpreccld 10663 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR+ )
6763, 64, 66lemul1d 10692 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  <_  ( ( ( |_
`  A )  +  1 )  -  d
)  <->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) ) )
6862, 67mpbid 203 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
691adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  CC )
7031nncnd 10021 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  CC )
7132recnd 9119 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  CC )
7269, 70, 71subdird 9495 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  =  ( ( A  x.  (
1  /  d ) )  -  ( d  x.  ( 1  / 
d ) ) ) )
7331nnne0d 10049 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  =/=  0 )
7470, 73recidd 9790 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d  x.  ( 1  /  d
) )  =  1 )
7574oveq2d 6100 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  ( d  x.  ( 1  /  d
) ) )  =  ( ( A  x.  ( 1  /  d
) )  -  1 ) )
7672, 75eqtr2d 2471 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  =  ( ( A  -  d )  x.  (
1  /  d ) ) )
77 fsumconst 12578 . . . . . . . . . 10  |-  ( ( ( d ... ( |_ `  A ) )  e.  Fin  /\  (
1  /  d )  e.  CC )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d )  =  ( ( # `  ( d ... ( |_ `  A ) ) )  x.  ( 1  /  d ) ) )
7851, 71, 77syl2anc 644 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( (
# `  ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) ) )
79 elfzuz3 11061 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
)
8079adantl 454 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  (
ZZ>= `  d ) )
81 hashfz 11697 . . . . . . . . . . . 12  |-  ( ( |_ `  A )  e.  ( ZZ>= `  d
)  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8280, 81syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8336recnd 9119 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
8483adantr 453 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  CC )
85 ax-1cn 9053 . . . . . . . . . . . . 13  |-  1  e.  CC
8685a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
8784, 86, 70addsubd 9437 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  =  ( ( ( |_
`  A )  -  d )  +  1 ) )
8882, 87eqtr4d 2473 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  +  1 )  -  d ) )
8988oveq1d 6099 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( # `
 ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) )  =  ( ( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
9078, 89eqtrd 2470 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( ( ( ( |_ `  A )  +  1 )  -  d )  x.  ( 1  / 
d ) ) )
9168, 76, 903brtr4d 4245 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  <_  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d ) )
9215, 50, 53, 91fsumle 12583 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
9315, 1, 71fsummulc2 12572 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) ) )
94 fsumconst 12578 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
9515, 85, 94sylancl 645 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
96 hashfz1 11635 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9724, 96syl 16 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9897oveq1d 6099 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 )  =  ( ( |_ `  A
)  x.  1 ) )
9983mulid1d 9110 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  x.  1 )  =  ( |_ `  A
) )
10095, 98, 993eqtrrd 2475 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 )
10193, 100oveq12d 6102 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  (
1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
10248recnd 9119 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  CC )
10315, 102, 86fsumsub 12576 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 ) )
104101, 103eqtr4d 2473 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 ) )
105 eqid 2438 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
106105uztrn2 10508 . . . . . . . . . . . . 13  |-  ( ( d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  ->  n  e.  ( ZZ>= `  1 )
)
107106adantl 454 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  n  e.  ( ZZ>= `  1 )
)
108107biantrurd 496 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
109 uzss 10511 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  d
)  ->  ( ZZ>= `  n )  C_  ( ZZ>=
`  d ) )
110109ad2antll 711 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  ( ZZ>=
`  n )  C_  ( ZZ>= `  d )
)
111110sseld 3349 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
) )
112111pm4.71rd 618 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
113108, 112bitr3d 248 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
114113pm5.32da 624 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) )  /\  ( n  e.  ( ZZ>=
`  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
115 ancom 439 . . . . . . . . 9  |-  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
116 an4 799 . . . . . . . . 9  |-  ( ( ( d  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d
) )  /\  (
n  e.  ( ZZ>= `  d )  /\  ( |_ `  A )  e.  ( ZZ>= `  n )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
117114, 115, 1163bitr4g 281 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
118 elfzuzb 11058 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
119 elfzuzb 11058 . . . . . . . . 9  |-  ( d  e.  ( 1 ... n )  <->  ( d  e.  ( ZZ>= `  1 )  /\  n  e.  ( ZZ>=
`  d ) ) )
120118, 119anbi12i 680 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) )  /\  ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) ) ) )
121 elfzuzb 11058 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  <->  ( d  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  d ) ) )
122 elfzuzb 11058 . . . . . . . . 9  |-  ( n  e.  ( d ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
123121, 122anbi12i 680 . . . . . . . 8  |-  ( ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  ( d ... ( |_ `  A
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
124117, 120, 1233bitr4g 281 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( d  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  ( d ... ( |_
`  A ) ) ) ) )
12519recnd 9119 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  CC )
126125anasss 630 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) ) )  ->  ( 1  /  d )  e.  CC )
12715, 15, 16, 124, 126fsumcom2 12563 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
12892, 104, 1273brtr4d 4245 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
12914, 37, 21, 45, 128letrd 9232 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
13028, 36readdcld 9120 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  e.  RR )
131 elfznn 11085 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
132131adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
133132nnrpd 10652 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
134133relogcld 20523 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  RR )
135 peano2re 9244 . . . . . . . 8  |-  ( ( log `  n )  e.  RR  ->  (
( log `  n
)  +  1 )  e.  RR )
136134, 135syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  n )  +  1 )  e.  RR )
137 nnz 10308 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
138 flid 11221 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
139137, 138syl 16 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( |_ `  n )  =  n )
140139oveq2d 6100 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
141140sumeq1d 12500 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... n
) ( 1  / 
d ) )
142 nnre 10012 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  RR )
143 nnge1 10031 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  <_  n )
144 harmonicubnd 20853 . . . . . . . . . 10  |-  ( ( n  e.  RR  /\  1  <_  n )  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d )  <_  ( ( log `  n )  +  1 ) )
145142, 143, 144syl2anc 644 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  <_  ( ( log `  n )  +  1 ) )
146141, 145eqbrtrrd 4237 . . . . . . . 8  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
147132, 146syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
14815, 20, 136, 147fsumle 12583 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 ) )
149134recnd 9119 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  CC )
15085a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
15115, 149, 150fsumadd 12537 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
152 logfac 20500 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
15324, 152syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
154 fsumconst 12578 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
15515, 85, 154sylancl 645 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
156155, 98, 993eqtrrd 2475 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ n  e.  (
1 ... ( |_ `  A ) ) 1 )
157153, 156oveq12d 6102 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
158151, 157eqtr4d 2473 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_
`  A ) ) )
159148, 158breqtrd 4239 . . . . 5  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_ `  A ) ) )
16036, 9, 28, 44leadd2dd 9646 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  <_ 
( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16121, 130, 29, 159, 160letrd 9232 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A
) )
16214, 21, 29, 129, 161letrd 9232 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16314, 9, 28lesubaddd 9628 . . 3  |-  ( A  e.  RR+  ->  ( ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_ 
( log `  ( ! `  ( |_ `  A ) ) )  <-> 
( ( A  x.  ( log `  A ) )  -  A )  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) ) )
164162, 163mpbird 225 . 2  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
16513, 164eqbrtrd 4235 1  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3322   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Fincfn 7112   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   RR+crp 10617   ...cfz 11048   |_cfl 11206   !cfa 11571   #chash 11623   sum_csu 12484   logclog 20457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-e 12676  df-sin 12677  df-cos 12678  df-pi 12680  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759  df-log 20459  df-em 20836
  Copyright terms: Public domain W3C validator