MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Unicode version

Theorem logfaclbnd 20461
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )

Proof of Theorem logfaclbnd
Dummy variables  d  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 10362 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  CC )
21times2d 9955 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  2 )  =  ( A  +  A
) )
32oveq2d 5874 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2
) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
4 relogcl 19932 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
54recnd 8861 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
6 2cn 9816 . . . . 5  |-  2  e.  CC
76a1i 10 . . . 4  |-  ( A  e.  RR+  ->  2  e.  CC )
81, 5, 7subdid 9235 . . 3  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( A  x.  ( log `  A ) )  -  ( A  x.  2 ) ) )
9 rpre 10360 . . . . . 6  |-  ( A  e.  RR+  ->  A  e.  RR )
109, 4remulcld 8863 . . . . 5  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  RR )
1110recnd 8861 . . . 4  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  e.  CC )
1211, 1, 1subsub4d 9188 . . 3  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  =  ( ( A  x.  ( log `  A ) )  -  ( A  +  A ) ) )
133, 8, 123eqtr4d 2325 . 2  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  =  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A ) )
1410, 9resubcld 9211 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  e.  RR )
15 fzfid 11035 . . . . 5  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
16 fzfid 11035 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
17 elfznn 10819 . . . . . . . 8  |-  ( d  e.  ( 1 ... n )  ->  d  e.  NN )
1817adantl 452 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  d  e.  NN )
1918nnrecred 9791 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  RR )
2016, 19fsumrecl 12207 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  e.  RR )
2115, 20fsumrecl 12207 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  e.  RR )
22 rprege0 10368 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
23 flge0nn0 10948 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2422, 23syl 15 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
25 faccl 11298 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2624, 25syl 15 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
2726nnrpd 10389 . . . . . 6  |-  ( A  e.  RR+  ->  ( ! `
 ( |_ `  A ) )  e.  RR+ )
2827relogcld 19974 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
2928, 9readdcld 8862 . . . 4  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  A )  e.  RR )
30 elfznn 10819 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
3130adantl 452 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
3231nnrecred 9791 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR )
3315, 32fsumrecl 12207 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
349, 33remulcld 8863 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  e.  RR )
35 reflcl 10928 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
369, 35syl 15 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
3734, 36resubcld 9211 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  e.  RR )
38 harmoniclbnd 20302 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )
39 rpregt0 10367 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
40 lemul2 9609 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( log `  A
)  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
414, 33, 39, 40syl3anc 1182 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  <_  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
)  <->  ( A  x.  ( log `  A ) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) ) ) )
4238, 41mpbid 201 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  x.  ( log `  A
) )  <_  ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) ) )
43 flle 10931 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
449, 43syl 15 . . . . . 6  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
4510, 36, 34, 9, 42, 44le2subd 9391 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d ) )  -  ( |_
`  A ) ) )
4630nnrecred 9791 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  (
1  /  d )  e.  RR )
47 remulcl 8822 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( 1  /  d
)  e.  RR )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
489, 46, 47syl2an 463 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  RR )
49 peano2rem 9113 . . . . . . . 8  |-  ( ( A  x.  ( 1  /  d ) )  e.  RR  ->  (
( A  x.  (
1  /  d ) )  -  1 )  e.  RR )
5048, 49syl 15 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  e.  RR )
51 fzfid 11035 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d ... ( |_ `  A
) )  e.  Fin )
5232adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  n  e.  ( d ... ( |_
`  A ) ) )  ->  ( 1  /  d )  e.  RR )
5351, 52fsumrecl 12207 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  e.  RR )
549adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
5554, 35syl 15 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  RR )
56 peano2re 8985 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
5755, 56syl 15 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( |_ `  A )  +  1 )  e.  RR )
5831nnred 9761 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR )
59 fllep1 10933 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
609, 59syl 15 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
6160adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  <_  ( ( |_ `  A
)  +  1 ) )
6254, 57, 58, 61lesub1dd 9388 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  <_ 
( ( ( |_
`  A )  +  1 )  -  d
) )
6354, 58resubcld 9211 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  -  d )  e.  RR )
6457, 58resubcld 9211 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  e.  RR )
6531nnrpd 10389 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
6665rpreccld 10400 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  RR+ )
6763, 64, 66lemul1d 10429 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  <_  ( ( ( |_
`  A )  +  1 )  -  d
)  <->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) ) )
6862, 67mpbid 201 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  <_  (
( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
691adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  CC )
7031nncnd 9762 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  CC )
7132recnd 8861 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  d )  e.  CC )
7269, 70, 71subdird 9236 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  -  d )  x.  ( 1  /  d
) )  =  ( ( A  x.  (
1  /  d ) )  -  ( d  x.  ( 1  / 
d ) ) ) )
7331nnne0d 9790 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  =/=  0 )
7470, 73recidd 9531 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( d  x.  ( 1  /  d
) )  =  1 )
7574oveq2d 5874 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  ( d  x.  ( 1  /  d
) ) )  =  ( ( A  x.  ( 1  /  d
) )  -  1 ) )
7672, 75eqtr2d 2316 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  =  ( ( A  -  d )  x.  (
1  /  d ) ) )
77 fsumconst 12252 . . . . . . . . . 10  |-  ( ( ( d ... ( |_ `  A ) )  e.  Fin  /\  (
1  /  d )  e.  CC )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d )  =  ( ( # `  ( d ... ( |_ `  A ) ) )  x.  ( 1  /  d ) ) )
7851, 71, 77syl2anc 642 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( (
# `  ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) ) )
79 elfzuz3 10795 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
)
8079adantl 452 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  (
ZZ>= `  d ) )
81 hashfz 11381 . . . . . . . . . . . 12  |-  ( ( |_ `  A )  e.  ( ZZ>= `  d
)  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8280, 81syl 15 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  -  d )  +  1 ) )
8336recnd 8861 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
8483adantr 451 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( |_ `  A )  e.  CC )
85 ax-1cn 8795 . . . . . . . . . . . . 13  |-  1  e.  CC
8685a1i 10 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
8784, 86, 70addsubd 9178 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( |_ `  A
)  +  1 )  -  d )  =  ( ( ( |_
`  A )  -  d )  +  1 ) )
8882, 87eqtr4d 2318 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( # `  (
d ... ( |_ `  A ) ) )  =  ( ( ( |_ `  A )  +  1 )  -  d ) )
8988oveq1d 5873 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( # `
 ( d ... ( |_ `  A
) ) )  x.  ( 1  /  d
) )  =  ( ( ( ( |_
`  A )  +  1 )  -  d
)  x.  ( 1  /  d ) ) )
9078, 89eqtrd 2315 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d
)  =  ( ( ( ( |_ `  A )  +  1 )  -  d )  x.  ( 1  / 
d ) ) )
9168, 76, 903brtr4d 4053 . . . . . . 7  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  x.  ( 1  /  d ) )  -  1 )  <_  sum_ n  e.  ( d ... ( |_ `  A ) ) ( 1  /  d ) )
9215, 50, 53, 91fsumle 12257 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  <_  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
9315, 1, 71fsummulc2 12246 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  x.  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  d
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) ) )
94 fsumconst 12252 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
9515, 85, 94sylancl 643 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
96 hashfz1 11345 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9724, 96syl 15 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  A ) ) )  =  ( |_
`  A ) )
9897oveq1d 5873 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 )  =  ( ( |_ `  A
)  x.  1 ) )
9983mulid1d 8852 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  x.  1 )  =  ( |_ `  A
) )
10095, 98, 993eqtrrd 2320 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 )
10193, 100oveq12d 5876 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  (
1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
10248recnd 8861 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  x.  ( 1  /  d
) )  e.  CC )
10315, 102, 86fsumsub 12250 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( A  x.  ( 1  /  d ) )  -  sum_ d  e.  ( 1 ... ( |_
`  A ) ) 1 ) )
104101, 103eqtr4d 2318 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( A  x.  ( 1  /  d
) )  -  1 ) )
105 eqid 2283 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
106105uztrn2 10245 . . . . . . . . . . . . 13  |-  ( ( d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  ->  n  e.  ( ZZ>= `  1 )
)
107106adantl 452 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  n  e.  ( ZZ>= `  1 )
)
108107biantrurd 494 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
109 uzss 10248 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  d
)  ->  ( ZZ>= `  n )  C_  ( ZZ>=
`  d ) )
110109ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  ( ZZ>=
`  n )  C_  ( ZZ>= `  d )
)
111110sseld 3179 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  ->  ( |_ `  A )  e.  ( ZZ>= `  d )
) )
112111pm4.71rd 616 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( |_ `  A
)  e.  ( ZZ>= `  n )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
113108, 112bitr3d 246 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  ->  (
( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  <->  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
114113pm5.32da 622 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( ( ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) )  /\  ( n  e.  ( ZZ>=
`  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
115 ancom 437 . . . . . . . . 9  |-  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
116 an4 797 . . . . . . . . 9  |-  ( ( ( d  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d
) )  /\  (
n  e.  ( ZZ>= `  d )  /\  ( |_ `  A )  e.  ( ZZ>= `  n )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
)  /\  ( ( |_ `  A )  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
117114, 115, 1163bitr4g 279 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( n  e.  (
ZZ>= `  1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  n
) )  /\  (
d  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  d )
) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) ) )
118 elfzuzb 10792 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
119 elfzuzb 10792 . . . . . . . . 9  |-  ( d  e.  ( 1 ... n )  <->  ( d  e.  ( ZZ>= `  1 )  /\  n  e.  ( ZZ>=
`  d ) ) )
120118, 119anbi12i 678 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( ( n  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) )  /\  ( d  e.  (
ZZ>= `  1 )  /\  n  e.  ( ZZ>= `  d ) ) ) )
121 elfzuzb 10792 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  <->  ( d  e.  ( ZZ>= `  1 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  d ) ) )
122 elfzuzb 10792 . . . . . . . . 9  |-  ( n  e.  ( d ... ( |_ `  A
) )  <->  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) )
123121, 122anbi12i 678 . . . . . . . 8  |-  ( ( d  e.  ( 1 ... ( |_ `  A ) )  /\  n  e.  ( d ... ( |_ `  A
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  d )
)  /\  ( n  e.  ( ZZ>= `  d )  /\  ( |_ `  A
)  e.  ( ZZ>= `  n ) ) ) )
124117, 120, 1233bitr4g 279 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) )  <-> 
( d  e.  ( 1 ... ( |_
`  A ) )  /\  n  e.  ( d ... ( |_
`  A ) ) ) ) )
12519recnd 8861 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e.  ( 1 ... n ) )  ->  ( 1  /  d )  e.  CC )
126125anasss 628 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  ( 1 ... n ) ) )  ->  ( 1  /  d )  e.  CC )
12715, 15, 16, 124, 126fsumcom2 12237 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ n  e.  (
d ... ( |_ `  A ) ) ( 1  /  d ) )
12892, 104, 1273brtr4d 4053 . . . . 5  |-  ( A  e.  RR+  ->  ( ( A  x.  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  d
) )  -  ( |_ `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
12914, 37, 21, 45, 128letrd 8973 . . . 4  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
) )
13028, 36readdcld 8862 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  e.  RR )
131 elfznn 10819 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
132131adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
133132nnrpd 10389 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
134133relogcld 19974 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  RR )
135 peano2re 8985 . . . . . . . 8  |-  ( ( log `  n )  e.  RR  ->  (
( log `  n
)  +  1 )  e.  RR )
136134, 135syl 15 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  n )  +  1 )  e.  RR )
137 nnz 10045 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
138 flid 10939 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
139137, 138syl 15 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( |_ `  n )  =  n )
140139oveq2d 5874 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
141140sumeq1d 12174 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  =  sum_ d  e.  ( 1 ... n
) ( 1  / 
d ) )
142 nnre 9753 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  RR )
143 nnge1 9772 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  <_  n )
144 harmonicubnd 20303 . . . . . . . . . 10  |-  ( ( n  e.  RR  /\  1  <_  n )  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d )  <_  ( ( log `  n )  +  1 ) )
145142, 143, 144syl2anc 642 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... ( |_ `  n ) ) ( 1  /  d
)  <_  ( ( log `  n )  +  1 ) )
146141, 145eqbrtrrd 4045 . . . . . . . 8  |-  ( n  e.  NN  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
147132, 146syl 15 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e.  ( 1 ... n
) ( 1  / 
d )  <_  (
( log `  n
)  +  1 ) )
14815, 20, 136, 147fsumle 12257 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 ) )
149134recnd 8861 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n )  e.  CC )
15085a1i 10 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  CC )
15115, 149, 150fsumadd 12211 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
152 logfac 19954 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
15324, 152syl 15 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
154 fsumconst 12252 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  A ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
15515, 85, 154sylancl 643 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  A
) ) )  x.  1 ) )
156155, 98, 993eqtrrd 2320 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  = 
sum_ n  e.  (
1 ... ( |_ `  A ) ) 1 )
157153, 156oveq12d 5876 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
)  +  sum_ n  e.  ( 1 ... ( |_ `  A ) ) 1 ) )
158151, 157eqtr4d 2318 . . . . . 6  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  n
)  +  1 )  =  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_
`  A ) ) )
159148, 158breqtrd 4047 . . . . 5  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  ( |_ `  A ) ) )
16036, 9, 28, 44leadd2dd 9387 . . . . 5  |-  ( A  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  A ) ) )  +  ( |_ `  A ) )  <_ 
( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16121, 130, 29, 159, 160letrd 8973 . . . 4  |-  ( A  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  ( 1 ... n ) ( 1  /  d
)  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A
) )
16214, 21, 29, 129, 161letrd 8973 . . 3  |-  ( A  e.  RR+  ->  ( ( A  x.  ( log `  A ) )  -  A )  <_  (
( log `  ( ! `  ( |_ `  A ) ) )  +  A ) )
16314, 9, 28lesubaddd 9369 . . 3  |-  ( A  e.  RR+  ->  ( ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_ 
( log `  ( ! `  ( |_ `  A ) ) )  <-> 
( ( A  x.  ( log `  A ) )  -  A )  <_  ( ( log `  ( ! `  ( |_ `  A ) ) )  +  A ) ) )
164162, 163mpbird 223 . 2  |-  ( A  e.  RR+  ->  ( ( ( A  x.  ( log `  A ) )  -  A )  -  A )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
16513, 164eqbrtrd 4043 1  |-  ( A  e.  RR+  ->  ( A  x.  ( ( log `  A )  -  2 ) )  <_  ( log `  ( ! `  ( |_ `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782   |_cfl 10924   !cfa 11288   #chash 11337   sum_csu 12158   logclog 19912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-em 20287
  Copyright terms: Public domain W3C validator