MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacubnd Unicode version

Theorem logfacubnd 20872
Description: A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfacubnd  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( A  x.  ( log `  A ) ) )

Proof of Theorem logfacubnd
StepHypRef Expression
1 rpre 10550 . . . . . . 7  |-  ( A  e.  RR+  ->  A  e.  RR )
2 flge1nn 11153 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  NN )
31, 2sylan 458 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  NN )
43nnnn0d 10206 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e. 
NN0 )
5 faccl 11503 . . . . 5  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
64, 5syl 16 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  NN )
76nnrpd 10579 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  RR+ )
87relogcld 20385 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
91adantr 452 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR )
10 reflcl 11132 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
119, 10syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  RR )
123nnrpd 10579 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  RR+ )
1312relogcld 20385 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( |_ `  A ) )  e.  RR )
1411, 13remulcld 9049 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  e.  RR )
15 relogcl 20340 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
1615adantr 452 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  A )  e.  RR )
179, 16remulcld 9049 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  x.  ( log `  A ) )  e.  RR )
18 facubnd 11518 . . . . 5  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  <_ 
( ( |_ `  A ) ^ ( |_ `  A ) ) )
194, 18syl 16 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  <_ 
( ( |_ `  A ) ^ ( |_ `  A ) ) )
203, 4nnexpcld 11471 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
) ^ ( |_
`  A ) )  e.  NN )
2120nnrpd 10579 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
) ^ ( |_
`  A ) )  e.  RR+ )
227, 21logled 20389 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ! `  ( |_ `  A ) )  <_  ( ( |_
`  A ) ^
( |_ `  A
) )  <->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( log `  ( ( |_ `  A ) ^ ( |_ `  A ) ) ) ) )
2319, 22mpbid 202 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) ) )
243nnzd 10306 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e.  ZZ )
25 relogexp 20357 . . . 4  |-  ( ( ( |_ `  A
)  e.  RR+  /\  ( |_ `  A )  e.  ZZ )  ->  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) )  =  ( ( |_ `  A )  x.  ( log `  ( |_ `  A ) ) ) )
2612, 24, 25syl2anc 643 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ( |_
`  A ) ^
( |_ `  A
) ) )  =  ( ( |_ `  A )  x.  ( log `  ( |_ `  A ) ) ) )
2723, 26breqtrd 4177 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) ) )
28 flle 11135 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
299, 28syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  <_  A )
30 simpl 444 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR+ )
3112, 30logled 20389 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  <_  A  <->  ( log `  ( |_ `  A
) )  <_  ( log `  A ) ) )
3229, 31mpbid 202 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( |_ `  A ) )  <_ 
( log `  A
) )
3312rprege0d 10587 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  e.  RR  /\  0  <_  ( |_ `  A ) ) )
34 log1 20347 . . . . . 6  |-  ( log `  1 )  =  0
353nnge1d 9974 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  ( |_ `  A
) )
36 1rp 10548 . . . . . . . 8  |-  1  e.  RR+
37 logleb 20365 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  ( |_ `  A )  e.  RR+ )  ->  ( 1  <_  ( |_ `  A )  <->  ( log `  1 )  <_  ( log `  ( |_ `  A ) ) ) )
3836, 12, 37sylancr 645 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
1  <_  ( |_ `  A )  <->  ( log `  1 )  <_  ( log `  ( |_ `  A ) ) ) )
3935, 38mpbid 202 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  1 )  <_ 
( log `  ( |_ `  A ) ) )
4034, 39syl5eqbrr 4187 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  0  <_  ( log `  ( |_ `  A ) ) )
4113, 40jca 519 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( |_ `  A ) )  e.  RR  /\  0  <_  ( log `  ( |_ `  A ) ) ) )
42 lemul12a 9800 . . . 4  |-  ( ( ( ( ( |_
`  A )  e.  RR  /\  0  <_ 
( |_ `  A
) )  /\  A  e.  RR )  /\  (
( ( log `  ( |_ `  A ) )  e.  RR  /\  0  <_  ( log `  ( |_ `  A ) ) )  /\  ( log `  A )  e.  RR ) )  ->  (
( ( |_ `  A )  <_  A  /\  ( log `  ( |_ `  A ) )  <_  ( log `  A
) )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) ) )
4333, 9, 41, 16, 42syl22anc 1185 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( |_ `  A )  <_  A  /\  ( log `  ( |_ `  A ) )  <_  ( log `  A
) )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) ) )
4429, 32, 43mp2and 661 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( |_ `  A
)  x.  ( log `  ( |_ `  A
) ) )  <_ 
( A  x.  ( log `  A ) ) )
458, 14, 17, 27, 44letrd 9159 1  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  <_  ( A  x.  ( log `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    <_ cle 9054   NNcn 9932   NN0cn0 10153   ZZcz 10214   RR+crp 10544   |_cfl 11128   ^cexp 11309   !cfa 11493   logclog 20319
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321
  Copyright terms: Public domain W3C validator