MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqr Structured version   Unicode version

Theorem loglesqr 20642
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
loglesqr  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  <_  ( sqr `  A ) )

Proof of Theorem loglesqr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9091 . . . 4  |-  0  e.  RR
21a1i 11 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  e.  RR )
3 simpl 444 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
4 elicc2 10975 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
51, 3, 4sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
65biimpa 471 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  A
) )
76simp1d 969 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  x  e.  RR )
86simp2d 970 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  0  <_  x )
97, 8ge0p1rpd 10674 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( x  +  1 )  e.  RR+ )
10 fvres 5745 . . . . . 6  |-  ( ( x  +  1 )  e.  RR+  ->  ( ( log  |`  RR+ ) `  ( x  +  1
) )  =  ( log `  ( x  +  1 ) ) )
119, 10syl 16 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( ( log  |`  RR+ ) `  (
x  +  1 ) )  =  ( log `  ( x  +  1 ) ) )
1211mpteq2dva 4295 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  =  ( x  e.  ( 0 [,] A ) 
|->  ( log `  (
x  +  1 ) ) ) )
13 eqid 2436 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413cnfldtopon 18817 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
157ex 424 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  ->  x  e.  RR ) )
1615ssrdv 3354 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  RR )
17 ax-resscn 9047 . . . . . . . 8  |-  RR  C_  CC
1816, 17syl6ss 3360 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  CC )
19 resttopon 17225 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  (
0 [,] A ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( 0 [,] A ) )  e.  (TopOn `  ( 0 [,] A ) ) )
2014, 18, 19sylancr 645 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( TopOpen ` fld )t  ( 0 [,] A ) )  e.  (TopOn `  ( 0 [,] A ) ) )
21 eqid 2436 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) )  =  ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )
229, 21fmptd 5893 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) ) : ( 0 [,] A ) -->
RR+ )
23 rpssre 10622 . . . . . . . . . 10  |-  RR+  C_  RR
2423, 17sstri 3357 . . . . . . . . 9  |-  RR+  C_  CC
2513addcn 18895 . . . . . . . . . . 11  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
2625a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  +  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
27 ssid 3367 . . . . . . . . . . 11  |-  CC  C_  CC
28 cncfmptid 18942 . . . . . . . . . . 11  |-  ( ( ( 0 [,] A
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( 0 [,] A )  |->  x )  e.  ( ( 0 [,] A )
-cn-> CC ) )
2918, 27, 28sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  x )  e.  ( ( 0 [,] A
) -cn-> CC ) )
30 ax-1cn 9048 . . . . . . . . . . . 12  |-  1  e.  CC
3130a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  CC )
3227a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  CC  C_  CC )
33 cncfmptc 18941 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( 0 [,] A
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( 0 [,] A )  |->  1 )  e.  ( ( 0 [,] A )
-cn-> CC ) )
3431, 18, 32, 33syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  1 )  e.  ( ( 0 [,] A
) -cn-> CC ) )
3513, 26, 29, 34cncfmpt2f 18944 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( 0 [,] A
) -cn-> CC ) )
36 cncffvrn 18928 . . . . . . . . 9  |-  ( (
RR+  C_  CC  /\  (
x  e.  ( 0 [,] A )  |->  ( x  +  1 ) )  e.  ( ( 0 [,] A )
-cn-> CC ) )  -> 
( ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )  e.  ( ( 0 [,] A ) -cn-> RR+ )  <->  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) ) : ( 0 [,] A ) --> RR+ ) )
3724, 35, 36sylancr 645 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )  e.  ( ( 0 [,] A ) -cn-> RR+ )  <->  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) ) : ( 0 [,] A ) --> RR+ ) )
3822, 37mpbird 224 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( 0 [,] A
) -cn-> RR+ ) )
39 eqid 2436 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  ( 0 [,] A
) )  =  ( ( TopOpen ` fld )t  ( 0 [,] A ) )
40 eqid 2436 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t 
RR+ )  =  ( ( TopOpen ` fld )t  RR+ )
4113, 39, 40cncfcn 18939 . . . . . . . 8  |-  ( ( ( 0 [,] A
)  C_  CC  /\  RR+  C_  CC )  ->  ( ( 0 [,] A ) -cn-> RR+ )  =  ( (
( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR+ ) ) )
4218, 24, 41sylancl 644 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( 0 [,] A ) -cn-> RR+ )  =  ( ( (
TopOpen ` fld )t  ( 0 [,] A
) )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
4338, 42eleqtrd 2512 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR+ ) ) )
44 relogcn 20529 . . . . . . . 8  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
45 eqid 2436 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
4613, 40, 45cncfcn 18939 . . . . . . . . 9  |-  ( (
RR+  C_  CC  /\  RR  C_  CC )  ->  ( RR+ -cn-> RR )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) ) )
4724, 17, 46mp2an 654 . . . . . . . 8  |-  ( RR+ -cn-> RR )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) )
4844, 47eleqtri 2508 . . . . . . 7  |-  ( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) )
4948a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5020, 43, 49cnmpt11f 17696 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  e.  ( ( ( TopOpen ` fld )t  (
0 [,] A ) )  Cn  ( (
TopOpen ` fld )t  RR ) ) )
5113, 39, 45cncfcn 18939 . . . . . 6  |-  ( ( ( 0 [,] A
)  C_  CC  /\  RR  C_  CC )  ->  (
( 0 [,] A
) -cn-> RR )  =  ( ( ( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5218, 17, 51sylancl 644 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( 0 [,] A ) -cn-> RR )  =  ( ( (
TopOpen ` fld )t  ( 0 [,] A
) )  Cn  (
( TopOpen ` fld )t  RR ) ) )
5350, 52eleqtrrd 2513 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  e.  ( ( 0 [,] A ) -cn-> RR ) )
5412, 53eqeltrrd 2511 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( log `  (
x  +  1 ) ) )  e.  ( ( 0 [,] A
) -cn-> RR ) )
55 reex 9081 . . . . . 6  |-  RR  e.  _V
5655prid1 3912 . . . . 5  |-  RR  e.  { RR ,  CC }
5756a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR  e.  { RR ,  CC } )
58 simpr 448 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
59 1rp 10616 . . . . . . 7  |-  1  e.  RR+
60 rpaddcl 10632 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  (
x  +  1 )  e.  RR+ )
6158, 59, 60sylancl 644 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( x  +  1 )  e.  RR+ )
6261relogcld 20518 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( log `  (
x  +  1 ) )  e.  RR )
6362recnd 9114 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( log `  (
x  +  1 ) )  e.  CC )
6461rpreccld 10658 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  e.  RR+ )
6530a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  1  e.  CC )
66 relogcl 20473 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( log `  y )  e.  RR )
6766adantl 453 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( log `  y
)  e.  RR )
6867recnd 9114 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( log `  y
)  e.  CC )
69 rpreccl 10635 . . . . . . 7  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
7069adantl 453 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( 1  /  y
)  e.  RR+ )
71 peano2re 9239 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
7271adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  ( x  + 
1 )  e.  RR )
7372recnd 9114 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  ( x  + 
1 )  e.  CC )
7430a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  1  e.  CC )
7517a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR  C_  CC )
7675sselda 3348 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  x  e.  CC )
7757dvmptid 19843 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
78 0cn 9084 . . . . . . . . . 10  |-  0  e.  CC
7978a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  0  e.  CC )
8057, 31dvmptc 19844 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  1 ) )  =  ( x  e.  RR  |->  0 ) )
8157, 76, 74, 77, 74, 79, 80dvmptadd 19846 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  ( x  +  1 ) ) )  =  ( x  e.  RR  |->  ( 1  +  0 ) ) )
8230addid1i 9253 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
8382mpteq2i 4292 . . . . . . . 8  |-  ( x  e.  RR  |->  ( 1  +  0 ) )  =  ( x  e.  RR  |->  1 )
8481, 83syl6eq 2484 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  ( x  +  1 ) ) )  =  ( x  e.  RR  |->  1 ) )
8523a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR+  C_  RR )
8613tgioo2 18834 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
87 ioorp 10988 . . . . . . . . 9  |-  ( 0 (,)  +oo )  =  RR+
88 iooretop 18800 . . . . . . . . 9  |-  ( 0 (,)  +oo )  e.  (
topGen `  ran  (,) )
8987, 88eqeltrri 2507 . . . . . . . 8  |-  RR+  e.  ( topGen `  ran  (,) )
9089a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR+ 
e.  ( topGen `  ran  (,) ) )
9157, 73, 74, 84, 85, 86, 13, 90dvmptres 19849 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( x  +  1 ) ) )  =  ( x  e.  RR+  |->  1 ) )
92 dvrelog 20528 . . . . . . 7  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( y  e.  RR+  |->  ( 1  /  y ) )
93 relogf1o 20464 . . . . . . . . . . 11  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
94 f1of 5674 . . . . . . . . . . 11  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
9593, 94mp1i 12 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ ) : RR+ --> RR )
9695feqmptd 5779 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  =  ( y  e.  RR+  |->  ( ( log  |`  RR+ ) `  y
) ) )
97 fvres 5745 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  ( ( log  |`  RR+ ) `  y )  =  ( log `  y ) )
9897mpteq2ia 4291 . . . . . . . . 9  |-  ( y  e.  RR+  |->  ( ( log  |`  RR+ ) `  y ) )  =  ( y  e.  RR+  |->  ( log `  y ) )
9996, 98syl6eq 2484 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  =  ( y  e.  RR+  |->  ( log `  y
) ) )
10099oveq2d 6097 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  ( log  |`  RR+ ) )  =  ( RR  _D  (
y  e.  RR+  |->  ( log `  y ) ) ) )
10192, 100syl5reqr 2483 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
y  e.  RR+  |->  ( log `  y ) ) )  =  ( y  e.  RR+  |->  ( 1  / 
y ) ) )
102 fveq2 5728 . . . . . 6  |-  ( y  =  ( x  + 
1 )  ->  ( log `  y )  =  ( log `  (
x  +  1 ) ) )
103 oveq2 6089 . . . . . 6  |-  ( y  =  ( x  + 
1 )  ->  (
1  /  y )  =  ( 1  / 
( x  +  1 ) ) )
10457, 57, 61, 65, 68, 70, 91, 101, 102, 103dvmptco 19858 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  RR+  |->  ( ( 1  /  ( x  + 
1 ) )  x.  1 ) ) )
10564rpcnd 10650 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  e.  CC )
106105mulid1d 9105 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( 1  / 
( x  +  1 ) )  x.  1 )  =  ( 1  /  ( x  + 
1 ) ) )
107106mpteq2dva 4295 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  RR+  |->  ( ( 1  / 
( x  +  1 ) )  x.  1 ) )  =  ( x  e.  RR+  |->  ( 1  /  ( x  + 
1 ) ) ) )
108104, 107eqtrd 2468 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  RR+  |->  ( 1  / 
( x  +  1 ) ) ) )
109 ioossicc 10996 . . . . . . . . 9  |-  ( 0 (,) A )  C_  ( 0 [,] A
)
110109sseli 3344 . . . . . . . 8  |-  ( x  e.  ( 0 (,) A )  ->  x  e.  ( 0 [,] A
) )
111110, 7sylan2 461 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  x  e.  RR )
112 eliooord 10970 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) A )  ->  (
0  <  x  /\  x  <  A ) )
113112simpld 446 . . . . . . . 8  |-  ( x  e.  ( 0 (,) A )  ->  0  <  x )
114113adantl 453 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  0  <  x )
115111, 114elrpd 10646 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  x  e.  RR+ )
116115ex 424 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 (,) A )  ->  x  e.  RR+ ) )
117116ssrdv 3354 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 (,) A
)  C_  RR+ )
118 iooretop 18800 . . . . 5  |-  ( 0 (,) A )  e.  ( topGen `  ran  (,) )
119118a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 (,) A
)  e.  ( topGen ` 
ran  (,) ) )
12057, 63, 64, 108, 117, 86, 13, 119dvmptres 19849 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  ( 0 (,) A )  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  ( 0 (,) A )  |->  ( 1  /  ( x  +  1 ) ) ) )
121 elrege0 11007 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) 
+oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
1227, 8, 121sylanbrc 646 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  x  e.  ( 0 [,)  +oo ) )
123122ex 424 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  ->  x  e.  ( 0 [,)  +oo )
) )
124123ssrdv 3354 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  ( 0 [,)  +oo ) )
125 resabs1 5175 . . . . . 6  |-  ( ( 0 [,] A ) 
C_  ( 0 [,) 
+oo )  ->  (
( sqr  |`  ( 0 [,)  +oo ) )  |`  ( 0 [,] A
) )  =  ( sqr  |`  ( 0 [,] A ) ) )
126124, 125syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,)  +oo ) )  |`  ( 0 [,] A
) )  =  ( sqr  |`  ( 0 [,] A ) ) )
127 sqrf 12167 . . . . . . 7  |-  sqr : CC
--> CC
128127a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sqr : CC --> CC )
129128, 18feqresmpt 5780 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr  |`  ( 0 [,] A ) )  =  ( x  e.  ( 0 [,] A
)  |->  ( sqr `  x
) ) )
130126, 129eqtrd 2468 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,)  +oo ) )  |`  ( 0 [,] A
) )  =  ( x  e.  ( 0 [,] A )  |->  ( sqr `  x ) ) )
131 resqrcn 20633 . . . . 5  |-  ( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( 0 [,)  +oo ) -cn-> RR )
132 rescncf 18927 . . . . 5  |-  ( ( 0 [,] A ) 
C_  ( 0 [,) 
+oo )  ->  (
( sqr  |`  ( 0 [,)  +oo ) )  e.  ( ( 0 [,) 
+oo ) -cn-> RR )  ->  ( ( sqr  |`  ( 0 [,)  +oo ) )  |`  (
0 [,] A ) )  e.  ( ( 0 [,] A )
-cn-> RR ) ) )
133124, 131, 132ee10 1385 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,)  +oo ) )  |`  ( 0 [,] A
) )  e.  ( ( 0 [,] A
) -cn-> RR ) )
134130, 133eqeltrrd 2511 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( sqr `  x
) )  e.  ( ( 0 [,] A
) -cn-> RR ) )
135 rpcn 10620 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  CC )
136135adantl 453 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  x  e.  CC )
137136sqrcld 12239 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  CC )
138 2rp 10617 . . . . . 6  |-  2  e.  RR+
139 rpsqrcl 12070 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
140139adantl 453 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  RR+ )
141 rpmulcl 10633 . . . . . 6  |-  ( ( 2  e.  RR+  /\  ( sqr `  x )  e.  RR+ )  ->  ( 2  x.  ( sqr `  x
) )  e.  RR+ )
142138, 140, 141sylancr 645 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  RR+ )
143142rpreccld 10658 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
2  x.  ( sqr `  x ) ) )  e.  RR+ )
144 dvsqr 20628 . . . . 5  |-  ( RR 
_D  ( x  e.  RR+  |->  ( sqr `  x
) ) )  =  ( x  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  x ) ) ) )
145144a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( sqr `  x ) ) )  =  ( x  e.  RR+  |->  ( 1  / 
( 2  x.  ( sqr `  x ) ) ) ) )
14657, 137, 143, 145, 117, 86, 13, 119dvmptres 19849 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  ( 0 (,) A )  |->  ( sqr `  x ) ) )  =  ( x  e.  ( 0 (,) A )  |->  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) ) )
147140rpred 10648 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  RR )
148 1re 9090 . . . . . . . . 9  |-  1  e.  RR
149 resubcl 9365 . . . . . . . . 9  |-  ( ( ( sqr `  x
)  e.  RR  /\  1  e.  RR )  ->  ( ( sqr `  x
)  -  1 )  e.  RR )
150147, 148, 149sylancl 644 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( sqr `  x
)  -  1 )  e.  RR )
151150sqge0d 11550 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  0  <_  ( (
( sqr `  x
)  -  1 ) ^ 2 ) )
152136sqsqrd 12241 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( sqr `  x
) ^ 2 )  =  x )
153137mulid1d 9105 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( sqr `  x
)  x.  1 )  =  ( sqr `  x
) )
154153oveq2d 6097 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  (
( sqr `  x
)  x.  1 ) )  =  ( 2  x.  ( sqr `  x
) ) )
155152, 154oveq12d 6099 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x ) ^ 2 )  -  ( 2  x.  ( ( sqr `  x )  x.  1 ) ) )  =  ( x  -  (
2  x.  ( sqr `  x ) ) ) )
156 sq1 11476 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
157156a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1 ^ 2 )  =  1 )
158155, 157oveq12d 6099 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( ( sqr `  x ) ^ 2 )  -  ( 2  x.  (
( sqr `  x
)  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( x  -  ( 2  x.  ( sqr `  x
) ) )  +  1 ) )
159 binom2sub 11498 . . . . . . . . 9  |-  ( ( ( sqr `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( sqr `  x )  -  1 ) ^ 2 )  =  ( ( ( ( sqr `  x
) ^ 2 )  -  ( 2  x.  ( ( sqr `  x
)  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
160137, 30, 159sylancl 644 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x )  -  1 ) ^ 2 )  =  ( ( ( ( sqr `  x
) ^ 2 )  -  ( 2  x.  ( ( sqr `  x
)  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
161142rpcnd 10650 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  CC )
162136, 65, 161addsubd 9432 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( x  + 
1 )  -  (
2  x.  ( sqr `  x ) ) )  =  ( ( x  -  ( 2  x.  ( sqr `  x
) ) )  +  1 ) )
163158, 160, 1623eqtr4d 2478 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x )  -  1 ) ^ 2 )  =  ( ( x  +  1 )  -  ( 2  x.  ( sqr `  x ) ) ) )
164151, 163breqtrd 4236 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  0  <_  ( (
x  +  1 )  -  ( 2  x.  ( sqr `  x
) ) ) )
16561rpred 10648 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( x  +  1 )  e.  RR )
166142rpred 10648 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  RR )
167165, 166subge0d 9616 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 0  <_  (
( x  +  1 )  -  ( 2  x.  ( sqr `  x
) ) )  <->  ( 2  x.  ( sqr `  x
) )  <_  (
x  +  1 ) ) )
168164, 167mpbid 202 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  <_  ( x  + 
1 ) )
169142, 61lerecd 10667 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( 2  x.  ( sqr `  x
) )  <_  (
x  +  1 )  <-> 
( 1  /  (
x  +  1 ) )  <_  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) ) )
170168, 169mpbid 202 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  <_  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) )
171115, 170syldan 457 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  ( 1  /  ( x  + 
1 ) )  <_ 
( 1  /  (
2  x.  ( sqr `  x ) ) ) )
172 rexr 9130 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR* )
173 0xr 9131 . . . . 5  |-  0  e.  RR*
174 lbicc2 11013 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  0  e.  ( 0 [,] A
) )
175173, 174mp3an1 1266 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  0  e.  ( 0 [,] A
) )
176172, 175sylan 458 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  e.  ( 0 [,] A ) )
177 ubicc2 11014 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
178173, 177mp3an1 1266 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
179172, 178sylan 458 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  ( 0 [,] A ) )
180 simpr 448 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  A )
181 oveq1 6088 . . . . . 6  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
182 0p1e1 10093 . . . . . 6  |-  ( 0  +  1 )  =  1
183181, 182syl6eq 2484 . . . . 5  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
184183fveq2d 5732 . . . 4  |-  ( x  =  0  ->  ( log `  ( x  + 
1 ) )  =  ( log `  1
) )
185 log1 20480 . . . 4  |-  ( log `  1 )  =  0
186184, 185syl6eq 2484 . . 3  |-  ( x  =  0  ->  ( log `  ( x  + 
1 ) )  =  0 )
187 fveq2 5728 . . . 4  |-  ( x  =  0  ->  ( sqr `  x )  =  ( sqr `  0
) )
188 sqr0 12047 . . . 4  |-  ( sqr `  0 )  =  0
189187, 188syl6eq 2484 . . 3  |-  ( x  =  0  ->  ( sqr `  x )  =  0 )
190 oveq1 6088 . . . 4  |-  ( x  =  A  ->  (
x  +  1 )  =  ( A  + 
1 ) )
191190fveq2d 5732 . . 3  |-  ( x  =  A  ->  ( log `  ( x  + 
1 ) )  =  ( log `  ( A  +  1 ) ) )
192 fveq2 5728 . . 3  |-  ( x  =  A  ->  ( sqr `  x )  =  ( sqr `  A
) )
1932, 3, 54, 120, 134, 146, 171, 176, 179, 180, 186, 189, 191, 192dvle 19891 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( log `  ( A  +  1 ) )  -  0 )  <_  ( ( sqr `  A )  -  0 ) )
194 ge0p1rp 10640 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  e.  RR+ )
195194relogcld 20518 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  e.  RR )
196 resqrcl 12059 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
197195, 196, 2lesub1d 9633 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( log `  ( A  +  1 ) )  <_  ( sqr `  A )  <->  ( ( log `  ( A  + 
1 ) )  - 
0 )  <_  (
( sqr `  A
)  -  0 ) ) )
198193, 197mpbird 224 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  <_  ( sqr `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3320   {cpr 3815   class class class wbr 4212    e. cmpt 4266   ran crn 4879    |` cres 4880   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   2c2 10049   RR+crp 10612   (,)cioo 10916   [,)cico 10918   [,]cicc 10919   ^cexp 11382   sqrcsqr 12038   ↾t crest 13648   TopOpenctopn 13649   topGenctg 13665  ℂfldccnfld 16703  TopOnctopon 16959    Cn ccn 17288    tX ctx 17592   -cn->ccncf 18906    _D cdv 19750   logclog 20452
This theorem is referenced by:  rplogsumlem1  21178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-tan 12674  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455
  Copyright terms: Public domain W3C validator