MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logreclem Unicode version

Theorem logreclem 20116
Description: Symmetry of the natural logarithm range by negation. Lemma for logrec 20117. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
Assertion
Ref Expression
logreclem  |-  ( ( A  e.  ran  log  /\ 
-.  ( Im `  A )  =  pi )  ->  -u A  e. 
ran  log )

Proof of Theorem logreclem
StepHypRef Expression
1 logrncn 19920 . . . . . . . . 9  |-  ( A  e.  ran  log  ->  A  e.  CC )
21adantr 451 . . . . . . . 8  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  A  e.  CC )
32negcld 9144 . . . . . . 7  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  -u A  e.  CC )
4 ellogrn 19917 . . . . . . . . . . . . . 14  |-  ( A  e.  ran  log  <->  ( A  e.  CC  /\  -u pi  <  ( Im `  A
)  /\  ( Im `  A )  <_  pi ) )
54biimpi 186 . . . . . . . . . . . . 13  |-  ( A  e.  ran  log  ->  ( A  e.  CC  /\  -u pi  <  ( Im
`  A )  /\  ( Im `  A )  <_  pi ) )
65simp3d 969 . . . . . . . . . . . 12  |-  ( A  e.  ran  log  ->  ( Im `  A )  <_  pi )
7 imcl 11596 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
8 pire 19832 . . . . . . . . . . . . 13  |-  pi  e.  RR
9 leneg 9277 . . . . . . . . . . . . . 14  |-  ( ( ( Im `  A
)  e.  RR  /\  pi  e.  RR )  -> 
( ( Im `  A )  <_  pi  <->  -u pi  <_  -u ( Im
`  A ) ) )
109biimpd 198 . . . . . . . . . . . . 13  |-  ( ( ( Im `  A
)  e.  RR  /\  pi  e.  RR )  -> 
( ( Im `  A )  <_  pi  -> 
-u pi  <_  -u (
Im `  A )
) )
117, 8, 10sylancl 643 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( Im `  A
)  <_  pi  ->  -u pi  <_  -u ( Im `  A ) ) )
121, 6, 11sylc 56 . . . . . . . . . . 11  |-  ( A  e.  ran  log  ->  -u pi  <_  -u ( Im `  A ) )
138renegcli 9108 . . . . . . . . . . . . . 14  |-  -u pi  e.  RR
1413a1i 10 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  -u pi  e.  RR )
157renegcld 9210 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
1614, 15leloed 8962 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( -u pi  <_  -u ( Im
`  A )  <->  ( -u pi  <  -u ( Im `  A )  \/  -u pi  =  -u ( Im `  A ) ) ) )
1716biimpd 198 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u pi  <_  -u ( Im
`  A )  -> 
( -u pi  <  -u (
Im `  A )  \/  -u pi  =  -u ( Im `  A ) ) ) )
181, 12, 17sylc 56 . . . . . . . . . 10  |-  ( A  e.  ran  log  ->  (
-u pi  <  -u (
Im `  A )  \/  -u pi  =  -u ( Im `  A ) ) )
1918orcomd 377 . . . . . . . . 9  |-  ( A  e.  ran  log  ->  (
-u pi  =  -u ( Im `  A )  \/  -u pi  <  -u (
Im `  A )
) )
2019orcanai 879 . . . . . . . 8  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  -u pi  <  -u ( Im `  A
) )
215simp2d 968 . . . . . . . . . . 11  |-  ( A  e.  ran  log  ->  -u pi  <  ( Im `  A ) )
22 ltnegcon1 9275 . . . . . . . . . . . . 13  |-  ( ( pi  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( -u pi  <  (
Im `  A )  <->  -u ( Im `  A
)  <  pi )
)
2322biimpd 198 . . . . . . . . . . . 12  |-  ( ( pi  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( -u pi  <  (
Im `  A )  -> 
-u ( Im `  A )  <  pi ) )
248, 7, 23sylancr 644 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u pi  <  ( Im
`  A )  ->  -u ( Im `  A
)  <  pi )
)
251, 21, 24sylc 56 . . . . . . . . . 10  |-  ( A  e.  ran  log  ->  -u ( Im `  A )  <  pi )
2625adantr 451 . . . . . . . . 9  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  -u ( Im
`  A )  < 
pi )
27 ltle 8910 . . . . . . . . . . . 12  |-  ( (
-u ( Im `  A )  e.  RR  /\  pi  e.  RR )  ->  ( -u (
Im `  A )  <  pi  ->  -u ( Im
`  A )  <_  pi ) )
2815, 8, 27sylancl 643 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u ( Im `  A
)  <  pi  ->  -u ( Im `  A )  <_  pi ) )
291, 28syl 15 . . . . . . . . . 10  |-  ( A  e.  ran  log  ->  (
-u ( Im `  A )  <  pi  -> 
-u ( Im `  A )  <_  pi ) )
3029adantr 451 . . . . . . . . 9  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( -u (
Im `  A )  <  pi  ->  -u ( Im
`  A )  <_  pi ) )
3126, 30mpd 14 . . . . . . . 8  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  -u ( Im
`  A )  <_  pi )
32 imneg 11618 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )
3332breq2d 4035 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( -u pi  <  ( Im
`  -u A )  <->  -u pi  <  -u ( Im `  A
) ) )
342, 33syl 15 . . . . . . . . 9  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( -u pi  <  ( Im `  -u A
)  <->  -u pi  <  -u (
Im `  A )
) )
3532breq1d 4033 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( Im `  -u A
)  <_  pi  <->  -u ( Im
`  A )  <_  pi ) )
362, 35syl 15 . . . . . . . . 9  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( (
Im `  -u A )  <_  pi  <->  -u ( Im
`  A )  <_  pi ) )
3734, 36anbi12d 691 . . . . . . . 8  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( ( -u pi  <  ( Im
`  -u A )  /\  ( Im `  -u A
)  <_  pi )  <->  (
-u pi  <  -u (
Im `  A )  /\  -u ( Im `  A )  <_  pi ) ) )
3820, 31, 37mpbir2and 888 . . . . . . 7  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( -u pi  <  ( Im `  -u A
)  /\  ( Im `  -u A )  <_  pi ) )
39 3anass 938 . . . . . . 7  |-  ( (
-u A  e.  CC  /\  -u pi  <  ( Im
`  -u A )  /\  ( Im `  -u A
)  <_  pi )  <->  (
-u A  e.  CC  /\  ( -u pi  <  ( Im `  -u A
)  /\  ( Im `  -u A )  <_  pi ) ) )
403, 38, 39sylanbrc 645 . . . . . 6  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  ( -u A  e.  CC  /\  -u pi  <  ( Im `  -u A
)  /\  ( Im `  -u A )  <_  pi ) )
41 ellogrn 19917 . . . . . 6  |-  ( -u A  e.  ran  log  <->  ( -u A  e.  CC  /\  -u pi  <  ( Im `  -u A
)  /\  ( Im `  -u A )  <_  pi ) )
4240, 41sylibr 203 . . . . 5  |-  ( ( A  e.  ran  log  /\ 
-.  -u pi  =  -u ( Im `  A ) )  ->  -u A  e. 
ran  log )
4342ex 423 . . . 4  |-  ( A  e.  ran  log  ->  ( -.  -u pi  =  -u ( Im `  A )  ->  -u A  e.  ran  log ) )
4443orrd 367 . . 3  |-  ( A  e.  ran  log  ->  (
-u pi  =  -u ( Im `  A )  \/  -u A  e.  ran  log ) )
45 recn 8827 . . . . . . . 8  |-  ( pi  e.  RR  ->  pi  e.  CC )
46 recn 8827 . . . . . . . 8  |-  ( ( Im `  A )  e.  RR  ->  (
Im `  A )  e.  CC )
4745, 46anim12i 549 . . . . . . 7  |-  ( ( pi  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( pi  e.  CC  /\  ( Im `  A
)  e.  CC ) )
488, 7, 47sylancr 644 . . . . . 6  |-  ( A  e.  CC  ->  (
pi  e.  CC  /\  ( Im `  A )  e.  CC ) )
491, 48syl 15 . . . . 5  |-  ( A  e.  ran  log  ->  ( pi  e.  CC  /\  ( Im `  A )  e.  CC ) )
50 neg11 9098 . . . . . 6  |-  ( ( pi  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( -u pi  =  -u ( Im `  A )  <-> 
pi  =  ( Im
`  A ) ) )
51 eqcom 2285 . . . . . 6  |-  ( pi  =  ( Im `  A )  <->  ( Im `  A )  =  pi )
5250, 51syl6bb 252 . . . . 5  |-  ( ( pi  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( -u pi  =  -u ( Im `  A )  <-> 
( Im `  A
)  =  pi ) )
5349, 52syl 15 . . . 4  |-  ( A  e.  ran  log  ->  (
-u pi  =  -u ( Im `  A )  <-> 
( Im `  A
)  =  pi ) )
5453orbi1d 683 . . 3  |-  ( A  e.  ran  log  ->  ( ( -u pi  =  -u ( Im `  A
)  \/  -u A  e.  ran  log )  <->  ( (
Im `  A )  =  pi  \/  -u A  e.  ran  log ) ) )
5544, 54mpbid 201 . 2  |-  ( A  e.  ran  log  ->  ( ( Im `  A
)  =  pi  \/  -u A  e.  ran  log ) )
5655orcanai 879 1  |-  ( ( A  e.  ran  log  /\ 
-.  ( Im `  A )  =  pi )  ->  -u A  e. 
ran  log )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ran crn 4690   ` cfv 5255   CCcc 8735   RRcr 8736    < clt 8867    <_ cle 8868   -ucneg 9038   Imcim 11583   picpi 12348   logclog 19912
This theorem is referenced by:  logrec  20117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914
  Copyright terms: Public domain W3C validator