MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Unicode version

Theorem logtayl2 20025
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s  |-  S  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
Assertion
Ref Expression
logtayl2  |-  ( A  e.  S  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( log `  A
) )
Distinct variable group:    A, k
Allowed substitution hint:    S( k)

Proof of Theorem logtayl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnuz 10279 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1z 10069 . . . 4  |-  1  e.  ZZ
32a1i 10 . . 3  |-  ( A  e.  S  ->  1  e.  ZZ )
4 neg1cn 9829 . . . 4  |-  -u 1  e.  CC
54a1i 10 . . 3  |-  ( A  e.  S  ->  -u 1  e.  CC )
6 ax-1cn 8811 . . . . . 6  |-  1  e.  CC
7 logtayl2.s . . . . . . . . 9  |-  S  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
87eleq2i 2360 . . . . . . . 8  |-  ( A  e.  S  <->  A  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 ) )
9 cnxmet 18298 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
10 1rp 10374 . . . . . . . . . 10  |-  1  e.  RR+
11 rpxr 10377 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
1210, 11ax-mp 8 . . . . . . . . 9  |-  1  e.  RR*
13 elbl 17965 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  CC  /\  1  e.  RR* )  ->  ( A  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) ) )
149, 6, 12, 13mp3an 1277 . . . . . . . 8  |-  ( A  e.  ( 1 (
ball `  ( abs  o. 
-  ) ) 1 )  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) )
158, 14bitri 240 . . . . . . 7  |-  ( A  e.  S  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) )
1615simplbi 446 . . . . . 6  |-  ( A  e.  S  ->  A  e.  CC )
17 subcl 9067 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
186, 16, 17sylancr 644 . . . . 5  |-  ( A  e.  S  ->  (
1  -  A )  e.  CC )
19 eqid 2296 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2019cnmetdval 18296 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1 ( abs 
o.  -  ) A
)  =  ( abs `  ( 1  -  A
) ) )
216, 16, 20sylancr 644 . . . . . 6  |-  ( A  e.  S  ->  (
1 ( abs  o.  -  ) A )  =  ( abs `  (
1  -  A ) ) )
2215simprbi 450 . . . . . 6  |-  ( A  e.  S  ->  (
1 ( abs  o.  -  ) A )  <  1 )
2321, 22eqbrtrrd 4061 . . . . 5  |-  ( A  e.  S  ->  ( abs `  ( 1  -  A ) )  <  1 )
24 logtayl 20023 . . . . 5  |-  ( ( ( 1  -  A
)  e.  CC  /\  ( abs `  ( 1  -  A ) )  <  1 )  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  ( 1  -  ( 1  -  A
) ) ) )
2518, 23, 24syl2anc 642 . . . 4  |-  ( A  e.  S  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  ( 1  -  ( 1  -  A
) ) ) )
26 nncan 9092 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  (
1  -  A ) )  =  A )
276, 16, 26sylancr 644 . . . . . 6  |-  ( A  e.  S  ->  (
1  -  ( 1  -  A ) )  =  A )
2827fveq2d 5545 . . . . 5  |-  ( A  e.  S  ->  ( log `  ( 1  -  ( 1  -  A
) ) )  =  ( log `  A
) )
2928negeqd 9062 . . . 4  |-  ( A  e.  S  ->  -u ( log `  ( 1  -  ( 1  -  A
) ) )  = 
-u ( log `  A
) )
3025, 29breqtrd 4063 . . 3  |-  ( A  e.  S  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  A ) )
31 oveq2 5882 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  -  A
) ^ k )  =  ( ( 1  -  A ) ^
n ) )
32 id 19 . . . . . . 7  |-  ( k  =  n  ->  k  =  n )
3331, 32oveq12d 5892 . . . . . 6  |-  ( k  =  n  ->  (
( ( 1  -  A ) ^ k
)  /  k )  =  ( ( ( 1  -  A ) ^ n )  /  n ) )
34 eqid 2296 . . . . . 6  |-  ( k  e.  NN  |->  ( ( ( 1  -  A
) ^ k )  /  k ) )  =  ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) )
35 ovex 5899 . . . . . 6  |-  ( ( ( 1  -  A
) ^ n )  /  n )  e. 
_V
3633, 34, 35fvmpt 5618 . . . . 5  |-  ( n  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) `  n
)  =  ( ( ( 1  -  A
) ^ n )  /  n ) )
3736adantl 452 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n )  =  ( ( ( 1  -  A ) ^ n
)  /  n ) )
38 nnnn0 9988 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  NN0 )
39 expcl 11137 . . . . . 6  |-  ( ( ( 1  -  A
)  e.  CC  /\  n  e.  NN0 )  -> 
( ( 1  -  A ) ^ n
)  e.  CC )
4018, 38, 39syl2an 463 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  e.  CC )
41 nncn 9770 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
4241adantl 452 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  CC )
43 nnne0 9794 . . . . . 6  |-  ( n  e.  NN  ->  n  =/=  0 )
4443adantl 452 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  =/=  0 )
4540, 42, 44divcld 9552 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( 1  -  A ) ^
n )  /  n
)  e.  CC )
4637, 45eqeltrd 2370 . . 3  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n )  e.  CC )
4740, 42, 44divnegd 9565 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( ( 1  -  A ) ^ n )  /  n )  =  (
-u ( ( 1  -  A ) ^
n )  /  n
) )
4845mulm1d 9247 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) )  =  -u ( ( ( 1  -  A ) ^
n )  /  n
) )
4938adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  NN0 )
50 expcl 11137 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  n  e.  NN0 )  ->  ( -u 1 ^ n )  e.  CC )
514, 49, 50sylancr 644 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ n )  e.  CC )
52 subcl 9067 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
5316, 6, 52sylancl 643 . . . . . . . . . 10  |-  ( A  e.  S  ->  ( A  -  1 )  e.  CC )
54 expcl 11137 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( A  - 
1 ) ^ n
)  e.  CC )
5553, 38, 54syl2an 463 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( A  - 
1 ) ^ n
)  e.  CC )
5651, 55mulneg1d 9248 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u ( -u
1 ^ n )  x.  ( ( A  -  1 ) ^
n ) )  = 
-u ( ( -u
1 ^ n )  x.  ( ( A  -  1 ) ^
n ) ) )
574a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u 1  e.  CC )
58 ax-1ne0 8822 . . . . . . . . . . . . 13  |-  1  =/=  0
596, 58negne0i 9137 . . . . . . . . . . . 12  |-  -u 1  =/=  0
6059a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u 1  =/=  0
)
61 nnz 10061 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
6261adantl 452 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  ZZ )
6357, 60, 62expm1d 11271 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  =  ( ( -u 1 ^ n )  /  -u 1
) )
646a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  1  e.  CC )
6558a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  1  =/=  0 )
6651, 64, 65divneg2d 9566 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( -u
1 ^ n )  /  1 )  =  ( ( -u 1 ^ n )  /  -u 1 ) )
6751div1d 9544 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ n )  / 
1 )  =  (
-u 1 ^ n
) )
6867negeqd 9062 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( -u
1 ^ n )  /  1 )  = 
-u ( -u 1 ^ n ) )
6963, 66, 683eqtr2d 2334 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u ( -u 1 ^ n
) )
7069oveq1d 5889 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  =  (
-u ( -u 1 ^ n )  x.  ( ( A  - 
1 ) ^ n
) ) )
7153mulm1d 9247 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  ( -u 1  x.  ( A  -  1 ) )  =  -u ( A  - 
1 ) )
72 negsubdi2 9122 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
7316, 6, 72sylancl 643 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  -u ( A  -  1 )  =  ( 1  -  A ) )
7471, 73eqtr2d 2329 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  (
1  -  A )  =  ( -u 1  x.  ( A  -  1 ) ) )
7574oveq1d 5889 . . . . . . . . . . 11  |-  ( A  e.  S  ->  (
( 1  -  A
) ^ n )  =  ( ( -u
1  x.  ( A  -  1 ) ) ^ n ) )
7675adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  =  ( (
-u 1  x.  ( A  -  1 ) ) ^ n ) )
77 mulexp 11157 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
784, 77mp3an1 1264 . . . . . . . . . . 11  |-  ( ( ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
7953, 38, 78syl2an 463 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
8076, 79eqtrd 2328 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
8180negeqd 9062 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( 1  -  A ) ^
n )  =  -u ( ( -u 1 ^ n )  x.  ( ( A  - 
1 ) ^ n
) ) )
8256, 70, 813eqtr4d 2338 . . . . . . 7  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  =  -u ( ( 1  -  A ) ^ n
) )
8382oveq1d 5889 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( A  -  1 ) ^
n ) )  /  n )  =  (
-u ( ( 1  -  A ) ^
n )  /  n
) )
8447, 48, 833eqtr4d 2338 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  /  n
) )
85 nnm1nn0 10021 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
8685adantl 452 . . . . . . 7  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( n  -  1 )  e.  NN0 )
87 expcl 11137 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  ( n  -  1 )  e.  NN0 )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
884, 86, 87sylancr 644 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8988, 55, 42, 44div23d 9589 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( A  -  1 ) ^
n ) )  /  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  /  n )  x.  (
( A  -  1 ) ^ n ) ) )
9084, 89eqtr2d 2329 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  /  n )  x.  ( ( A  - 
1 ) ^ n
) )  =  (
-u 1  x.  (
( ( 1  -  A ) ^ n
)  /  n ) ) )
91 oveq1 5881 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  -  1 )  =  ( n  - 
1 ) )
9291oveq2d 5890 . . . . . . . 8  |-  ( k  =  n  ->  ( -u 1 ^ ( k  -  1 ) )  =  ( -u 1 ^ ( n  - 
1 ) ) )
9392, 32oveq12d 5892 . . . . . . 7  |-  ( k  =  n  ->  (
( -u 1 ^ (
k  -  1 ) )  /  k )  =  ( ( -u
1 ^ ( n  -  1 ) )  /  n ) )
94 oveq2 5882 . . . . . . 7  |-  ( k  =  n  ->  (
( A  -  1 ) ^ k )  =  ( ( A  -  1 ) ^
n ) )
9593, 94oveq12d 5892 . . . . . 6  |-  ( k  =  n  ->  (
( ( -u 1 ^ ( k  - 
1 ) )  / 
k )  x.  (
( A  -  1 ) ^ k ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  /  n
)  x.  ( ( A  -  1 ) ^ n ) ) )
96 eqid 2296 . . . . . 6  |-  ( k  e.  NN  |->  ( ( ( -u 1 ^ ( k  -  1 ) )  /  k
)  x.  ( ( A  -  1 ) ^ k ) ) )  =  ( k  e.  NN  |->  ( ( ( -u 1 ^ ( k  -  1 ) )  /  k
)  x.  ( ( A  -  1 ) ^ k ) ) )
97 ovex 5899 . . . . . 6  |-  ( ( ( -u 1 ^ ( n  -  1 ) )  /  n
)  x.  ( ( A  -  1 ) ^ n ) )  e.  _V
9895, 96, 97fvmpt 5618 . . . . 5  |-  ( n  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) `  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  /  n )  x.  (
( A  -  1 ) ^ n ) ) )
9998adantl 452 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( (
-u 1 ^ (
k  -  1 ) )  /  k )  x.  ( ( A  -  1 ) ^
k ) ) ) `
 n )  =  ( ( ( -u
1 ^ ( n  -  1 ) )  /  n )  x.  ( ( A  - 
1 ) ^ n
) ) )
10037oveq2d 5890 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n ) )  =  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) ) )
10190, 99, 1003eqtr4d 2338 . . 3  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( (
-u 1 ^ (
k  -  1 ) )  /  k )  x.  ( ( A  -  1 ) ^
k ) ) ) `
 n )  =  ( -u 1  x.  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n ) ) )
1021, 3, 5, 30, 46, 101isermulc2 12147 . 2  |-  ( A  e.  S  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( -u 1  x.  -u ( log `  A
) ) )
1037dvlog2lem 20015 . . . . . . . 8  |-  S  C_  ( CC  \  (  -oo (,] 0 ) )
104103sseli 3189 . . . . . . 7  |-  ( A  e.  S  ->  A  e.  ( CC  \  (  -oo (,] 0 ) ) )
105 eqid 2296 . . . . . . . 8  |-  ( CC 
\  (  -oo (,] 0 ) )  =  ( CC  \  (  -oo (,] 0 ) )
106105logdmn0 20003 . . . . . . 7  |-  ( A  e.  ( CC  \ 
(  -oo (,] 0 ) )  ->  A  =/=  0 )
107104, 106syl 15 . . . . . 6  |-  ( A  e.  S  ->  A  =/=  0 )
108 logcl 19942 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
10916, 107, 108syl2anc 642 . . . . 5  |-  ( A  e.  S  ->  ( log `  A )  e.  CC )
110109negcld 9160 . . . 4  |-  ( A  e.  S  ->  -u ( log `  A )  e.  CC )
111110mulm1d 9247 . . 3  |-  ( A  e.  S  ->  ( -u 1  x.  -u ( log `  A ) )  =  -u -u ( log `  A
) )
112109negnegd 9164 . . 3  |-  ( A  e.  S  ->  -u -u ( log `  A )  =  ( log `  A
) )
113111, 112eqtrd 2328 . 2  |-  ( A  e.  S  ->  ( -u 1  x.  -u ( log `  A ) )  =  ( log `  A
) )
114102, 113breqtrd 4063 1  |-  ( A  e.  S  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( log `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   class class class wbr 4039    e. cmpt 4093    o. ccom 4709   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    -oocmnf 8881   RR*cxr 8882    < clt 8883    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   RR+crp 10370   (,]cioc 10673    seq cseq 11062   ^cexp 11120   abscabs 11735    ~~> cli 11974   * Metcxmt 16385   ballcbl 16387   logclog 19928
This theorem is referenced by:  stirlinglem5  27930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-tan 12369  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-ulm 19772  df-log 19930
  Copyright terms: Public domain W3C validator