MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Unicode version

Theorem lpfval 16870
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
lpfval  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
Distinct variable groups:    x, y, J    x, X, y

Proof of Theorem lpfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4  |-  X  = 
U. J
21topopn 16652 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4194 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 mptexg 5745 . . 3  |-  ( ~P X  e.  _V  ->  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `  (
x  \  { y } ) ) } )  e.  _V )
52, 3, 43syl 18 . 2  |-  ( J  e.  Top  ->  (
x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `  (
x  \  { y } ) ) } )  e.  _V )
6 unieq 3836 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1syl6eqr 2333 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3630 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
9 fveq2 5525 . . . . . . 7  |-  ( j  =  J  ->  ( cls `  j )  =  ( cls `  J
) )
109fveq1d 5527 . . . . . 6  |-  ( j  =  J  ->  (
( cls `  j
) `  ( x  \  { y } ) )  =  ( ( cls `  J ) `
 ( x  \  { y } ) ) )
1110eleq2d 2350 . . . . 5  |-  ( j  =  J  ->  (
y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) )  <->  y  e.  ( ( cls `  J
) `  ( x  \  { y } ) ) ) )
1211abbidv 2397 . . . 4  |-  ( j  =  J  ->  { y  |  y  e.  ( ( cls `  j
) `  ( x  \  { y } ) ) }  =  {
y  |  y  e.  ( ( cls `  J
) `  ( x  \  { y } ) ) } )
138, 12mpteq12dv 4098 . . 3  |-  ( j  =  J  ->  (
x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
14 df-lp 16868 . . 3  |-  limPt  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } ) )
1513, 14fvmptg 5600 . 2  |-  ( ( J  e.  Top  /\  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } )  e. 
_V )  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
165, 15mpdan 649 1  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    \ cdif 3149   ~Pcpw 3625   {csn 3640   U.cuni 3827    e. cmpt 4077   ` cfv 5255   Topctop 16631   clsccl 16755   limPtclp 16866
This theorem is referenced by:  lpval  16871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-lp 16868
  Copyright terms: Public domain W3C validator