MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Unicode version

Theorem lpival 15997
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p  |-  P  =  (LPIdeal `  R )
lpival.k  |-  K  =  (RSpan `  R )
lpival.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
lpival  |-  ( R  e.  Ring  ->  P  = 
U_ g  e.  B  { ( K `  { g } ) } )
Distinct variable groups:    R, g    P, g    B, g    g, K

Proof of Theorem lpival
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
2 fveq2 5525 . . . . . 6  |-  ( r  =  R  ->  (RSpan `  r )  =  (RSpan `  R ) )
32fveq1d 5527 . . . . 5  |-  ( r  =  R  ->  (
(RSpan `  r ) `  { g } )  =  ( (RSpan `  R ) `  {
g } ) )
43sneqd 3653 . . . 4  |-  ( r  =  R  ->  { ( (RSpan `  r ) `  { g } ) }  =  { ( (RSpan `  R ) `  { g } ) } )
51, 4iuneq12d 3929 . . 3  |-  ( r  =  R  ->  U_ g  e.  ( Base `  r
) { ( (RSpan `  r ) `  {
g } ) }  =  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } )
6 df-lpidl 15995 . . 3  |- LPIdeal  =  ( r  e.  Ring  |->  U_ g  e.  ( Base `  r
) { ( (RSpan `  r ) `  {
g } ) } )
7 fvex 5539 . . . . . 6  |-  (RSpan `  R )  e.  _V
87rnex 4942 . . . . 5  |-  ran  (RSpan `  R )  e.  _V
9 p0ex 4197 . . . . 5  |-  { (/) }  e.  _V
108, 9unex 4518 . . . 4  |-  ( ran  (RSpan `  R )  u.  { (/) } )  e. 
_V
11 iunss 3943 . . . . 5  |-  ( U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } )  <->  A. g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } 
C_  ( ran  (RSpan `  R )  u.  { (/)
} ) )
12 fvrn0 5550 . . . . . . 7  |-  ( (RSpan `  R ) `  {
g } )  e.  ( ran  (RSpan `  R )  u.  { (/)
} )
13 snssi 3759 . . . . . . 7  |-  ( ( (RSpan `  R ) `  { g } )  e.  ( ran  (RSpan `  R )  u.  { (/)
} )  ->  { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } ) )
1412, 13ax-mp 8 . . . . . 6  |-  { ( (RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } )
1514a1i 10 . . . . 5  |-  ( g  e.  ( Base `  R
)  ->  { (
(RSpan `  R ) `  { g } ) }  C_  ( ran  (RSpan `  R )  u. 
{ (/) } ) )
1611, 15mprgbir 2613 . . . 4  |-  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } 
C_  ( ran  (RSpan `  R )  u.  { (/)
} )
1710, 16ssexi 4159 . . 3  |-  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) }  e.  _V
185, 6, 17fvmpt 5602 . 2  |-  ( R  e.  Ring  ->  (LPIdeal `  R
)  =  U_ g  e.  ( Base `  R
) { ( (RSpan `  R ) `  {
g } ) } )
19 lpival.p . 2  |-  P  =  (LPIdeal `  R )
20 lpival.b . . . 4  |-  B  =  ( Base `  R
)
21 iuneq1 3918 . . . 4  |-  ( B  =  ( Base `  R
)  ->  U_ g  e.  B  { ( K `
 { g } ) }  =  U_ g  e.  ( Base `  R ) { ( K `  { g } ) } )
2220, 21ax-mp 8 . . 3  |-  U_ g  e.  B  { ( K `  { g } ) }  =  U_ g  e.  ( Base `  R ) { ( K `  { g } ) }
23 lpival.k . . . . . . 7  |-  K  =  (RSpan `  R )
2423fveq1i 5526 . . . . . 6  |-  ( K `
 { g } )  =  ( (RSpan `  R ) `  {
g } )
2524sneqi 3652 . . . . 5  |-  { ( K `  { g } ) }  =  { ( (RSpan `  R ) `  {
g } ) }
2625a1i 10 . . . 4  |-  ( g  e.  ( Base `  R
)  ->  { ( K `  { g } ) }  =  { ( (RSpan `  R ) `  {
g } ) } )
2726iuneq2i 3923 . . 3  |-  U_ g  e.  ( Base `  R
) { ( K `
 { g } ) }  =  U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }
2822, 27eqtri 2303 . 2  |-  U_ g  e.  B  { ( K `  { g } ) }  =  U_ g  e.  ( Base `  R ) { ( (RSpan `  R ) `  { g } ) }
2918, 19, 283eqtr4g 2340 1  |-  ( R  e.  Ring  ->  P  = 
U_ g  e.  B  { ( K `  { g } ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   U_ciun 3905   ran crn 4690   ` cfv 5255   Basecbs 13148   Ringcrg 15337  RSpancrsp 15924  LPIdealclpidl 15993
This theorem is referenced by:  islpidl  15998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-lpidl 15995
  Copyright terms: Public domain W3C validator