Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol Structured version   Unicode version

Theorem lplncvrlvol 30350
Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol.b  |-  B  =  ( Base `  K
)
lplncvrlvol.c  |-  C  =  (  <o  `  K )
lplncvrlvol.p  |-  P  =  ( LPlanes `  K )
lplncvrlvol.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lplncvrlvol  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )

Proof of Theorem lplncvrlvol
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  K  e.  HL )
2 simpll3 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  B )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X  e.  P )
4 simplr 732 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  X C Y )
5 lplncvrlvol.b . . . 4  |-  B  =  ( Base `  K
)
6 lplncvrlvol.c . . . 4  |-  C  =  (  <o  `  K )
7 lplncvrlvol.p . . . 4  |-  P  =  ( LPlanes `  K )
8 lplncvrlvol.v . . . 4  |-  V  =  ( LVols `  K )
95, 6, 7, 8lvoli 30309 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  P )  /\  X C Y )  ->  Y  e.  V
)
101, 2, 3, 4, 9syl31anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  P )  ->  Y  e.  V )
11 simpll1 996 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  HL )
12 simpll2 997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  B )
13 hllat 30098 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1411, 13syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  K  e.  Lat )
15 simpll3 998 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y  e.  B )
16 eqid 2435 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
175, 16latref 14474 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  B )  ->  Y ( le `  K ) Y )
1814, 15, 17syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  Y
( le `  K
) Y )
1911adantr 452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  K  e.  HL )
20 simplr 732 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  V )
21 simpr 448 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  Y  e.  ( Atoms `  K )
)
22 eqid 2435 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
2316, 22, 8lvolnleat 30317 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  V  /\  Y  e.  ( Atoms `  K ) )  ->  -.  Y ( le `  K ) Y )
2419, 20, 21, 23syl3anc 1184 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  Y  e.  ( Atoms `  K )
)  ->  -.  Y
( le `  K
) Y )
2524ex 424 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  ->  -.  Y ( le `  K ) Y ) )
2618, 25mt2d 111 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( Atoms `  K ) )
27 simplr 732 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X C Y )
28 breq1 4207 . . . . . . . 8  |-  ( X  =  ( 0. `  K )  ->  ( X C Y  <->  ( 0. `  K ) C Y ) )
2927, 28syl5ibcom 212 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  ( 0. `  K ) C Y ) )
30 eqid 2435 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
315, 30, 6, 22isat2 30022 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  (
Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3211, 15, 31syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( Y  e.  ( Atoms `  K )  <->  ( 0. `  K ) C Y ) )
3329, 32sylibrd 226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  =  ( 0. `  K )  ->  Y  e.  ( Atoms `  K )
) )
3433necon3bd 2635 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( -.  Y  e.  ( Atoms `  K )  ->  X  =/=  ( 0. `  K ) ) )
3526, 34mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  =/=  ( 0. `  K
) )
36 eqid 2435 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
3736, 8lvolnelln 30323 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  (
LLines `  K ) )
3811, 37sylancom 649 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  ( LLines `  K ) )
3911adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  K  e.  HL )
4015adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  B )
41 simpr 448 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X  e.  ( Atoms `  K )
)
42 simpllr 736 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  X C Y )
435, 6, 22, 36llni 30242 . . . . . 6  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  ( Atoms `  K ) )  /\  X C Y )  ->  Y  e.  ( LLines `  K ) )
4439, 40, 41, 42, 43syl31anc 1187 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  /\  X  e.  ( Atoms `  K )
)  ->  Y  e.  ( LLines `  K )
)
4538, 44mtand 641 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( Atoms `  K ) )
467, 8lvolnelpln 30324 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  V )  ->  -.  Y  e.  P
)
4711, 46sylancom 649 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  Y  e.  P )
485, 6, 36, 7llncvrlpln 30292 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
4948adantr 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( X  e.  ( LLines `  K )  <->  Y  e.  P ) )
5047, 49mtbird 293 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  -.  X  e.  ( LLines `  K ) )
515, 16, 30, 22, 36, 7lplnle 30274 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( X  =/=  ( 0. `  K
)  /\  -.  X  e.  ( Atoms `  K )  /\  -.  X  e.  (
LLines `  K ) ) )  ->  E. z  e.  P  z ( le `  K ) X )
5211, 12, 35, 45, 50, 51syl23anc 1191 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  E. z  e.  P  z ( le `  K ) X )
53 simpr3 965 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) X )
54 simpll1 996 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  HL )
55 hlop 30097 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
5654, 55syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  OP )
57 simpr2 964 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  P )
585, 7lplnbase 30268 . . . . . . . . . 10  |-  ( z  e.  P  ->  z  e.  B )
5957, 58syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  e.  B )
60 simpll2 997 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  B )
61 simpll3 998 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  B )
62 simpr1 963 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  Y  e.  V )
635, 16, 6cvrle 30013 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X ( le
`  K ) Y )
6463adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X ( le `  K ) Y )
65 hlpos 30100 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Poset )
6654, 65syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  K  e.  Poset
)
675, 16postr 14402 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  (
z  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6866, 59, 60, 61, 67syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( (
z ( le `  K ) X  /\  X ( le `  K ) Y )  ->  z ( le
`  K ) Y ) )
6953, 64, 68mp2and 661 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z ( le `  K ) Y )
7016, 6, 7, 8lplncvrlvol2 30349 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  z  e.  P  /\  Y  e.  V )  /\  z ( le `  K ) Y )  ->  z C Y )
7154, 57, 62, 69, 70syl31anc 1187 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z C Y )
72 simplr 732 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X C Y )
735, 16, 6cvrcmp2 30019 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( z  e.  B  /\  X  e.  B  /\  Y  e.  B
)  /\  ( z C Y  /\  X C Y ) )  -> 
( z ( le
`  K ) X  <-> 
z  =  X ) )
7456, 59, 60, 61, 71, 72, 73syl132anc 1202 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  ( z
( le `  K
) X  <->  z  =  X ) )
7553, 74mpbid 202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  z  =  X )
7675, 57eqeltrrd 2510 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  ( Y  e.  V  /\  z  e.  P  /\  z ( le `  K ) X ) )  ->  X  e.  P )
77763exp2 1171 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( Y  e.  V  ->  ( z  e.  P  ->  ( z ( le `  K
) X  ->  X  e.  P ) ) ) )
7877imp 419 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  (
z  e.  P  -> 
( z ( le
`  K ) X  ->  X  e.  P
) ) )
7978rexlimdv 2821 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  ( E. z  e.  P  z ( le `  K ) X  ->  X  e.  P )
)
8052, 79mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  V )  ->  X  e.  P )
8110, 80impbida 806 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  P  <->  Y  e.  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5446   Basecbs 13461   lecple 13528   Posetcpo 14389   0.cp0 14458   Latclat 14466   OPcops 29907    <o ccvr 29997   Atomscatm 29998   HLchlt 30085   LLinesclln 30225   LPlanesclpl 30226   LVolsclvol 30227
This theorem is referenced by:  2lplnmj  30356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234
  Copyright terms: Public domain W3C validator