Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnle2at Structured version   Unicode version

Theorem lplnnle2at 30400
Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lplnnle2at.l  |-  .<_  =  ( le `  K )
lplnnle2at.j  |-  .\/  =  ( join `  K )
lplnnle2at.a  |-  A  =  ( Atoms `  K )
lplnnle2at.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
lplnnle2at  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  -.  X  .<_  ( Q  .\/  R ) )

Proof of Theorem lplnnle2at
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr1 964 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  X  e.  P )
2 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
3 eqid 2438 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
4 eqid 2438 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
5 lplnnle2at.p . . . . . 6  |-  P  =  ( LPlanes `  K )
62, 3, 4, 5islpln 30389 . . . . 5  |-  ( K  e.  HL  ->  ( X  e.  P  <->  ( X  e.  ( Base `  K
)  /\  E. y  e.  ( LLines `  K )
y (  <o  `  K
) X ) ) )
76adantr 453 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( X  e.  P  <->  ( X  e.  ( Base `  K
)  /\  E. y  e.  ( LLines `  K )
y (  <o  `  K
) X ) ) )
81, 7mpbid 203 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( X  e.  ( Base `  K )  /\  E. y  e.  ( LLines `  K ) y ( 
<o  `  K ) X ) )
98simprd 451 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  E. y  e.  ( LLines `  K )
y (  <o  `  K
) X )
10 oveq1 6090 . . . . . . . . 9  |-  ( Q  =  R  ->  ( Q  .\/  R )  =  ( R  .\/  R
) )
1110breq2d 4226 . . . . . . . 8  |-  ( Q  =  R  ->  ( X  .<_  ( Q  .\/  R )  <->  X  .<_  ( R 
.\/  R ) ) )
1211notbid 287 . . . . . . 7  |-  ( Q  =  R  ->  ( -.  X  .<_  ( Q 
.\/  R )  <->  -.  X  .<_  ( R  .\/  R
) ) )
13 simpl1 961 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  K  e.  HL )
14 simpl3l 1013 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  y  e.  ( LLines `  K )
)
15 simpl22 1037 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  Q  e.  A )
16 simpl23 1038 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  R  e.  A )
17 simpr 449 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  Q  =/=  R )
18 lplnnle2at.j . . . . . . . . . . 11  |-  .\/  =  ( join `  K )
19 lplnnle2at.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
2018, 19, 4llni2 30371 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  /\  Q  =/=  R
)  ->  ( Q  .\/  R )  e.  (
LLines `  K ) )
2113, 15, 16, 17, 20syl31anc 1188 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  ( Q  .\/  R )  e.  (
LLines `  K ) )
22 eqid 2438 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
2322, 4llnnlt 30382 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  y  e.  ( LLines `  K )  /\  ( Q  .\/  R )  e.  ( LLines `  K )
)  ->  -.  y
( lt `  K
) ( Q  .\/  R ) )
2413, 14, 21, 23syl3anc 1185 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  -.  y
( lt `  K
) ( Q  .\/  R ) )
252, 4llnbase 30368 . . . . . . . . . . 11  |-  ( y  e.  ( LLines `  K
)  ->  y  e.  ( Base `  K )
)
2614, 25syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  y  e.  ( Base `  K )
)
27 simpl21 1036 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  X  e.  P )
282, 5lplnbase 30393 . . . . . . . . . . 11  |-  ( X  e.  P  ->  X  e.  ( Base `  K
) )
2927, 28syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  X  e.  ( Base `  K )
)
30 simpl3r 1014 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  y (  <o  `  K ) X )
312, 22, 3cvrlt 30130 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  y  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) )  /\  y
(  <o  `  K ) X )  ->  y
( lt `  K
) X )
3213, 26, 29, 30, 31syl31anc 1188 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  y ( lt `  K ) X )
33 hlpos 30225 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
3413, 33syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  K  e.  Poset
)
352, 18, 19hlatjcl 30226 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
3613, 15, 16, 35syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  ( Q  .\/  R )  e.  (
Base `  K )
)
37 lplnnle2at.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
382, 37, 22pltletr 14430 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
y  e.  ( Base `  K )  /\  X  e.  ( Base `  K
)  /\  ( Q  .\/  R )  e.  (
Base `  K )
) )  ->  (
( y ( lt
`  K ) X  /\  X  .<_  ( Q 
.\/  R ) )  ->  y ( lt
`  K ) ( Q  .\/  R ) ) )
3934, 26, 29, 36, 38syl13anc 1187 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  ( (
y ( lt `  K ) X  /\  X  .<_  ( Q  .\/  R ) )  ->  y
( lt `  K
) ( Q  .\/  R ) ) )
4032, 39mpand 658 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  ( X  .<_  ( Q  .\/  R
)  ->  y ( lt `  K ) ( Q  .\/  R ) ) )
4124, 40mtod 171 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  /\  Q  =/=  R
)  ->  -.  X  .<_  ( Q  .\/  R
) )
42 simp1 958 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  K  e.  HL )
43 simp3l 986 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  y  e.  (
LLines `  K ) )
44 simp23 993 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  R  e.  A
)
4537, 19, 4llnnleat 30372 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  y  e.  ( LLines `  K )  /\  R  e.  A )  ->  -.  y  .<_  R )
4642, 43, 44, 45syl3anc 1185 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  -.  y  .<_  R )
4743, 25syl 16 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  y  e.  (
Base `  K )
)
48 simp21 991 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  X  e.  P
)
4948, 28syl 16 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  X  e.  (
Base `  K )
)
50 simp3r 987 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  y (  <o  `  K ) X )
5142, 47, 49, 50, 31syl31anc 1188 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  y ( lt
`  K ) X )
52333ad2ant1 979 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  K  e.  Poset )
532, 19atbase 30149 . . . . . . . . . . . . 13  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
5444, 53syl 16 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  R  e.  (
Base `  K )
)
552, 37, 22pltletr 14430 . . . . . . . . . . . 12  |-  ( ( K  e.  Poset  /\  (
y  e.  ( Base `  K )  /\  X  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
) )  ->  (
( y ( lt
`  K ) X  /\  X  .<_  R )  ->  y ( lt
`  K ) R ) )
5652, 47, 49, 54, 55syl13anc 1187 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( ( y ( lt `  K
) X  /\  X  .<_  R )  ->  y
( lt `  K
) R ) )
5751, 56mpand 658 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( X  .<_  R  ->  y ( lt
`  K ) R ) )
5837, 22pltle 14420 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  y  e.  ( LLines `  K )  /\  R  e.  A )  ->  (
y ( lt `  K ) R  -> 
y  .<_  R ) )
5942, 43, 44, 58syl3anc 1185 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( y ( lt `  K ) R  ->  y  .<_  R ) )
6057, 59syld 43 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( X  .<_  R  ->  y  .<_  R ) )
6146, 60mtod 171 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  -.  X  .<_  R )
6218, 19hlatjidm 30228 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
6342, 44, 62syl2anc 644 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( R  .\/  R )  =  R )
6463breq2d 4226 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  ( X  .<_  ( R  .\/  R )  <-> 
X  .<_  R ) )
6561, 64mtbird 294 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  -.  X  .<_  ( R  .\/  R ) )
6612, 41, 65pm2.61ne 2681 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  /\  ( y  e.  ( LLines `  K )  /\  y (  <o  `  K
) X ) )  ->  -.  X  .<_  ( Q  .\/  R ) )
67663exp 1153 . . . . 5  |-  ( K  e.  HL  ->  (
( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  ->  ( (
y  e.  ( LLines `  K )  /\  y
(  <o  `  K ) X )  ->  -.  X  .<_  ( Q  .\/  R ) ) ) )
6867exp4a 591 . . . 4  |-  ( K  e.  HL  ->  (
( X  e.  P  /\  Q  e.  A  /\  R  e.  A
)  ->  ( y  e.  ( LLines `  K )  ->  ( y (  <o  `  K ) X  ->  -.  X  .<_  ( Q 
.\/  R ) ) ) ) )
6968imp 420 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
y  e.  ( LLines `  K )  ->  (
y (  <o  `  K
) X  ->  -.  X  .<_  ( Q  .\/  R ) ) ) )
7069rexlimdv 2831 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( E. y  e.  ( LLines `
 K ) y (  <o  `  K ) X  ->  -.  X  .<_  ( Q  .\/  R ) ) )
719, 70mpd 15 1  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Q  e.  A  /\  R  e.  A
) )  ->  -.  X  .<_  ( Q  .\/  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   Posetcpo 14399   ltcplt 14400   joincjn 14403    <o ccvr 30122   Atomscatm 30123   HLchlt 30210   LLinesclln 30350   LPlanesclpl 30351
This theorem is referenced by:  lplnnleat  30401  lplnnlelln  30402  2atnelpln  30403  lvolnle3at  30441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358
  Copyright terms: Public domain W3C validator