Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnri2N Unicode version

Theorem lplnri2N 29795
Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnri1.j  |-  .\/  =  ( join `  K )
lplnri1.a  |-  A  =  ( Atoms `  K )
lplnri1.p  |-  P  =  ( LPlanes `  K )
lplnri1.y  |-  Y  =  ( ( Q  .\/  R )  .\/  S )
Assertion
Ref Expression
lplnri2N  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  Q  =/=  S )

Proof of Theorem lplnri2N
StepHypRef Expression
1 eqid 2358 . . 3  |-  ( le
`  K )  =  ( le `  K
)
2 lplnri1.j . . 3  |-  .\/  =  ( join `  K )
3 lplnri1.a . . 3  |-  A  =  ( Atoms `  K )
4 lplnri1.p . . 3  |-  P  =  ( LPlanes `  K )
5 lplnri1.y . . 3  |-  Y  =  ( ( Q  .\/  R )  .\/  S )
61, 2, 3, 4, 5lplnriaN 29791 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  -.  Q ( le `  K ) ( R 
.\/  S ) )
71, 2, 3atnlej2 29621 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  -.  Q
( le `  K
) ( R  .\/  S ) )  ->  Q  =/=  S )
86, 7syld3an3 1227 1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Y  e.  P )  ->  Q  =/=  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   lecple 13306   joincjn 14171   Atomscatm 29505   HLchlt 29592   LPlanesclpl 29733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740
  Copyright terms: Public domain W3C validator