MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpni Unicode version

Theorem lpni 21615
Description: For any line, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.)
Hypothesis
Ref Expression
lpni.1  |-  P  = 
U. G
Assertion
Ref Expression
lpni  |-  ( ( G  e.  Plig  /\  L  e.  G )  ->  E. a  e.  P  a  e/  L )
Distinct variable groups:    G, a    L, a    P, a

Proof of Theorem lpni
Dummy variables  b 
c  d  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpni.1 . . . 4  |-  P  = 
U. G
21tncp 21614 . . 3  |-  ( G  e.  Plig  ->  E. b  e.  P  E. c  e.  P  E. d  e.  P  A. l  e.  G  -.  (
b  e.  l  /\  c  e.  l  /\  d  e.  l )
)
3 eleq2 2448 . . . . . . . . . 10  |-  ( l  =  L  ->  (
b  e.  l  <->  b  e.  L ) )
4 eleq2 2448 . . . . . . . . . 10  |-  ( l  =  L  ->  (
c  e.  l  <->  c  e.  L ) )
5 eleq2 2448 . . . . . . . . . 10  |-  ( l  =  L  ->  (
d  e.  l  <->  d  e.  L ) )
63, 4, 53anbi123d 1254 . . . . . . . . 9  |-  ( l  =  L  ->  (
( b  e.  l  /\  c  e.  l  /\  d  e.  l )  <->  ( b  e.  L  /\  c  e.  L  /\  d  e.  L ) ) )
76notbid 286 . . . . . . . 8  |-  ( l  =  L  ->  ( -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  <->  -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L ) ) )
87rspccv 2992 . . . . . . 7  |-  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  -.  (
b  e.  L  /\  c  e.  L  /\  d  e.  L )
) )
9 eleq1 2447 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a  e.  L  <->  b  e.  L ) )
109notbid 286 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( -.  a  e.  L  <->  -.  b  e.  L ) )
1110rspcev 2995 . . . . . . . . . 10  |-  ( ( b  e.  P  /\  -.  b  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
1211ex 424 . . . . . . . . 9  |-  ( b  e.  P  ->  ( -.  b  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
13 eleq1 2447 . . . . . . . . . . . 12  |-  ( a  =  c  ->  (
a  e.  L  <->  c  e.  L ) )
1413notbid 286 . . . . . . . . . . 11  |-  ( a  =  c  ->  ( -.  a  e.  L  <->  -.  c  e.  L ) )
1514rspcev 2995 . . . . . . . . . 10  |-  ( ( c  e.  P  /\  -.  c  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
1615ex 424 . . . . . . . . 9  |-  ( c  e.  P  ->  ( -.  c  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
17 eleq1 2447 . . . . . . . . . . . 12  |-  ( a  =  d  ->  (
a  e.  L  <->  d  e.  L ) )
1817notbid 286 . . . . . . . . . . 11  |-  ( a  =  d  ->  ( -.  a  e.  L  <->  -.  d  e.  L ) )
1918rspcev 2995 . . . . . . . . . 10  |-  ( ( d  e.  P  /\  -.  d  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
2019ex 424 . . . . . . . . 9  |-  ( d  e.  P  ->  ( -.  d  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
2112, 16, 203jaao 1251 . . . . . . . 8  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( ( -.  b  e.  L  \/  -.  c  e.  L  \/  -.  d  e.  L
)  ->  E. a  e.  P  -.  a  e.  L ) )
22 3ianor 951 . . . . . . . 8  |-  ( -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L
)  <->  ( -.  b  e.  L  \/  -.  c  e.  L  \/  -.  d  e.  L
) )
23 df-nel 2553 . . . . . . . . 9  |-  ( a  e/  L  <->  -.  a  e.  L )
2423rexbii 2674 . . . . . . . 8  |-  ( E. a  e.  P  a  e/  L  <->  E. a  e.  P  -.  a  e.  L )
2521, 22, 243imtr4g 262 . . . . . . 7  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L )  ->  E. a  e.  P  a  e/  L ) )
268, 25syl9r 69 . . . . . 6  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) )
27263expia 1155 . . . . 5  |-  ( ( b  e.  P  /\  c  e.  P )  ->  ( d  e.  P  ->  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) ) )
2827rexlimdv 2772 . . . 4  |-  ( ( b  e.  P  /\  c  e.  P )  ->  ( E. d  e.  P  A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) )
2928rexlimivv 2778 . . 3  |-  ( E. b  e.  P  E. c  e.  P  E. d  e.  P  A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) )
302, 29syl 16 . 2  |-  ( G  e.  Plig  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) )
3130imp 419 1  |-  ( ( G  e.  Plig  /\  L  e.  G )  ->  E. a  e.  P  a  e/  L )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    \/ w3o 935    /\ w3a 936    = wceq 1649    e. wcel 1717    e/ wnel 2551   A.wral 2649   E.wrex 2650   U.cuni 3957   Pligcplig 21611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-v 2901  df-uni 3958  df-plig 21612
  Copyright terms: Public domain W3C validator