MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpni Unicode version

Theorem lpni 20846
Description: For any line, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.)
Hypothesis
Ref Expression
lpni.1  |-  P  = 
U. G
Assertion
Ref Expression
lpni  |-  ( ( G  e.  Plig  /\  L  e.  G )  ->  E. a  e.  P  a  e/  L )
Distinct variable groups:    G, a    L, a    P, a

Proof of Theorem lpni
Dummy variables  b 
c  d  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpni.1 . . . 4  |-  P  = 
U. G
21tncp 20845 . . 3  |-  ( G  e.  Plig  ->  E. b  e.  P  E. c  e.  P  E. d  e.  P  A. l  e.  G  -.  (
b  e.  l  /\  c  e.  l  /\  d  e.  l )
)
3 eleq2 2344 . . . . . . . . . 10  |-  ( l  =  L  ->  (
b  e.  l  <->  b  e.  L ) )
4 eleq2 2344 . . . . . . . . . 10  |-  ( l  =  L  ->  (
c  e.  l  <->  c  e.  L ) )
5 eleq2 2344 . . . . . . . . . 10  |-  ( l  =  L  ->  (
d  e.  l  <->  d  e.  L ) )
63, 4, 53anbi123d 1252 . . . . . . . . 9  |-  ( l  =  L  ->  (
( b  e.  l  /\  c  e.  l  /\  d  e.  l )  <->  ( b  e.  L  /\  c  e.  L  /\  d  e.  L ) ) )
76notbid 285 . . . . . . . 8  |-  ( l  =  L  ->  ( -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  <->  -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L ) ) )
87rspccv 2881 . . . . . . 7  |-  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  -.  (
b  e.  L  /\  c  e.  L  /\  d  e.  L )
) )
9 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a  e.  L  <->  b  e.  L ) )
109notbid 285 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( -.  a  e.  L  <->  -.  b  e.  L ) )
1110rspcev 2884 . . . . . . . . . 10  |-  ( ( b  e.  P  /\  -.  b  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
1211ex 423 . . . . . . . . 9  |-  ( b  e.  P  ->  ( -.  b  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
13 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  c  ->  (
a  e.  L  <->  c  e.  L ) )
1413notbid 285 . . . . . . . . . . 11  |-  ( a  =  c  ->  ( -.  a  e.  L  <->  -.  c  e.  L ) )
1514rspcev 2884 . . . . . . . . . 10  |-  ( ( c  e.  P  /\  -.  c  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
1615ex 423 . . . . . . . . 9  |-  ( c  e.  P  ->  ( -.  c  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
17 eleq1 2343 . . . . . . . . . . . 12  |-  ( a  =  d  ->  (
a  e.  L  <->  d  e.  L ) )
1817notbid 285 . . . . . . . . . . 11  |-  ( a  =  d  ->  ( -.  a  e.  L  <->  -.  d  e.  L ) )
1918rspcev 2884 . . . . . . . . . 10  |-  ( ( d  e.  P  /\  -.  d  e.  L
)  ->  E. a  e.  P  -.  a  e.  L )
2019ex 423 . . . . . . . . 9  |-  ( d  e.  P  ->  ( -.  d  e.  L  ->  E. a  e.  P  -.  a  e.  L
) )
2112, 16, 203jaao 1249 . . . . . . . 8  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( ( -.  b  e.  L  \/  -.  c  e.  L  \/  -.  d  e.  L
)  ->  E. a  e.  P  -.  a  e.  L ) )
22 3ianor 949 . . . . . . . 8  |-  ( -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L
)  <->  ( -.  b  e.  L  \/  -.  c  e.  L  \/  -.  d  e.  L
) )
23 df-nel 2449 . . . . . . . . 9  |-  ( a  e/  L  <->  -.  a  e.  L )
2423rexbii 2568 . . . . . . . 8  |-  ( E. a  e.  P  a  e/  L  <->  E. a  e.  P  -.  a  e.  L )
2521, 22, 243imtr4g 261 . . . . . . 7  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( -.  ( b  e.  L  /\  c  e.  L  /\  d  e.  L )  ->  E. a  e.  P  a  e/  L ) )
268, 25syl9r 67 . . . . . 6  |-  ( ( b  e.  P  /\  c  e.  P  /\  d  e.  P )  ->  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) )
27263expia 1153 . . . . 5  |-  ( ( b  e.  P  /\  c  e.  P )  ->  ( d  e.  P  ->  ( A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) ) )
2827rexlimdv 2666 . . . 4  |-  ( ( b  e.  P  /\  c  e.  P )  ->  ( E. d  e.  P  A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) ) )
2928rexlimivv 2672 . . 3  |-  ( E. b  e.  P  E. c  e.  P  E. d  e.  P  A. l  e.  G  -.  ( b  e.  l  /\  c  e.  l  /\  d  e.  l )  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) )
302, 29syl 15 . 2  |-  ( G  e.  Plig  ->  ( L  e.  G  ->  E. a  e.  P  a  e/  L ) )
3130imp 418 1  |-  ( ( G  e.  Plig  /\  L  e.  G )  ->  E. a  e.  P  a  e/  L )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684    e/ wnel 2447   A.wral 2543   E.wrex 2544   U.cuni 3827   Pligcplig 20842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-v 2790  df-uni 3828  df-plig 20843
  Copyright terms: Public domain W3C validator