Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolconN Structured version   Unicode version

Theorem lpolconN 32287
Description: Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolcon.v  |-  V  =  ( Base `  W
)
lpolcon.p  |-  P  =  (LPol `  W )
lpolcon.w  |-  ( ph  ->  W  e.  X )
lpolcon.o  |-  ( ph  -> 
._|_  e.  P )
lpolcon.x  |-  ( ph  ->  X  C_  V )
lpolcon.y  |-  ( ph  ->  Y  C_  V )
lpolcon.c  |-  ( ph  ->  X  C_  Y )
Assertion
Ref Expression
lpolconN  |-  ( ph  ->  (  ._|_  `  Y ) 
C_  (  ._|_  `  X
) )

Proof of Theorem lpolconN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolcon.o . . 3  |-  ( ph  -> 
._|_  e.  P )
2 lpolcon.w . . . 4  |-  ( ph  ->  W  e.  X )
3 lpolcon.v . . . . 5  |-  V  =  ( Base `  W
)
4 eqid 2438 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
5 eqid 2438 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
6 eqid 2438 . . . . 5  |-  (LSAtoms `  W
)  =  (LSAtoms `  W
)
7 eqid 2438 . . . . 5  |-  (LSHyp `  W )  =  (LSHyp `  W )
8 lpolcon.p . . . . 5  |-  P  =  (LPol `  W )
93, 4, 5, 6, 7, 8islpolN 32283 . . . 4  |-  ( W  e.  X  ->  (  ._|_  e.  P  <->  (  ._|_  : ~P V --> ( LSubSp `  W )  /\  (
(  ._|_  `  V )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
(  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  (LSAtoms `  W )
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
102, 9syl 16 . . 3  |-  ( ph  ->  (  ._|_  e.  P  <->  ( 
._|_  : ~P V --> ( LSubSp `  W )  /\  (
(  ._|_  `  V )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
(  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  (LSAtoms `  W )
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
111, 10mpbid 203 . 2  |-  ( ph  ->  (  ._|_  : ~P V
--> ( LSubSp `  W )  /\  ( (  ._|_  `  V
)  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x )
)  /\  A. x  e.  (LSAtoms `  W )
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) )
12 simpr2 965 . . 3  |-  ( ( 
._|_  : ~P V --> ( LSubSp `  W )  /\  (
(  ._|_  `  V )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
(  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  (LSAtoms `  W )
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) )  ->  A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
(  ._|_  `  y )  C_  (  ._|_  `  x ) ) )
13 lpolcon.x . . . . 5  |-  ( ph  ->  X  C_  V )
14 lpolcon.y . . . . 5  |-  ( ph  ->  Y  C_  V )
15 lpolcon.c . . . . 5  |-  ( ph  ->  X  C_  Y )
1613, 14, 153jca 1135 . . . 4  |-  ( ph  ->  ( X  C_  V  /\  Y  C_  V  /\  X  C_  Y ) )
17 fvex 5744 . . . . . . . 8  |-  ( Base `  W )  e.  _V
183, 17eqeltri 2508 . . . . . . 7  |-  V  e. 
_V
1918elpw2 4366 . . . . . 6  |-  ( X  e.  ~P V  <->  X  C_  V
)
2013, 19sylibr 205 . . . . 5  |-  ( ph  ->  X  e.  ~P V
)
2118elpw2 4366 . . . . . 6  |-  ( Y  e.  ~P V  <->  Y  C_  V
)
2214, 21sylibr 205 . . . . 5  |-  ( ph  ->  Y  e.  ~P V
)
23 sseq1 3371 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  C_  V  <->  X  C_  V
) )
24 biidd 230 . . . . . . . . 9  |-  ( x  =  X  ->  (
y  C_  V  <->  y  C_  V ) )
25 sseq1 3371 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  C_  y  <->  X  C_  y
) )
2623, 24, 253anbi123d 1255 . . . . . . . 8  |-  ( x  =  X  ->  (
( x  C_  V  /\  y  C_  V  /\  x  C_  y )  <->  ( X  C_  V  /\  y  C_  V  /\  X  C_  y
) ) )
27 fveq2 5730 . . . . . . . . 9  |-  ( x  =  X  ->  (  ._|_  `  x )  =  (  ._|_  `  X ) )
2827sseq2d 3378 . . . . . . . 8  |-  ( x  =  X  ->  (
(  ._|_  `  y )  C_  (  ._|_  `  x )  <-> 
(  ._|_  `  y )  C_  (  ._|_  `  X ) ) )
2926, 28imbi12d 313 . . . . . . 7  |-  ( x  =  X  ->  (
( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  x ) )  <->  ( ( X  C_  V  /\  y  C_  V  /\  X  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  X )
) ) )
30 biidd 230 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X  C_  V  <->  X  C_  V
) )
31 sseq1 3371 . . . . . . . . 9  |-  ( y  =  Y  ->  (
y  C_  V  <->  Y  C_  V
) )
32 sseq2 3372 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X  C_  y  <->  X  C_  Y
) )
3330, 31, 323anbi123d 1255 . . . . . . . 8  |-  ( y  =  Y  ->  (
( X  C_  V  /\  y  C_  V  /\  X  C_  y )  <->  ( X  C_  V  /\  Y  C_  V  /\  X  C_  Y
) ) )
34 fveq2 5730 . . . . . . . . 9  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
3534sseq1d 3377 . . . . . . . 8  |-  ( y  =  Y  ->  (
(  ._|_  `  y )  C_  (  ._|_  `  X )  <-> 
(  ._|_  `  Y )  C_  (  ._|_  `  X ) ) )
3633, 35imbi12d 313 . . . . . . 7  |-  ( y  =  Y  ->  (
( ( X  C_  V  /\  y  C_  V  /\  X  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  X ) )  <->  ( ( X  C_  V  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
) ) )
3729, 36sylan9bb 682 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x )
)  <->  ( ( X 
C_  V  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
) ) )
3837spc2gv 3041 . . . . 5  |-  ( ( X  e.  ~P V  /\  Y  e.  ~P V )  ->  ( A. x A. y ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y )  -> 
(  ._|_  `  y )  C_  (  ._|_  `  x ) )  ->  ( ( X  C_  V  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
) ) )
3920, 22, 38syl2anc 644 . . . 4  |-  ( ph  ->  ( A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x )
)  ->  ( ( X  C_  V  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
) ) )
4016, 39mpid 40 . . 3  |-  ( ph  ->  ( A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x )
)  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X ) ) )
4112, 40syl5 31 . 2  |-  ( ph  ->  ( (  ._|_  : ~P V
--> ( LSubSp `  W )  /\  ( (  ._|_  `  V
)  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x 
C_  V  /\  y  C_  V  /\  x  C_  y )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x )
)  /\  A. x  e.  (LSAtoms `  W )
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) )  -> 
(  ._|_  `  Y )  C_  (  ._|_  `  X ) ) )
4211, 41mpd 15 1  |-  ( ph  ->  (  ._|_  `  Y ) 
C_  (  ._|_  `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    C_ wss 3322   ~Pcpw 3801   {csn 3816   -->wf 5452   ` cfv 5456   Basecbs 13471   0gc0g 13725   LSubSpclss 16010  LSAtomsclsa 29774  LSHypclsh 29775  LPolclpoN 32280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-map 7022  df-lpolN 32281
  Copyright terms: Public domain W3C validator