Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolpolsatN Unicode version

Theorem lpolpolsatN 31679
Description: Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolpolsat.a  |-  A  =  (LSAtoms `  W )
lpolpolsat.p  |-  P  =  (LPol `  W )
lpolpolsat.w  |-  ( ph  ->  W  e.  X )
lpolpolsat.o  |-  ( ph  -> 
._|_  e.  P )
lpolpolsat.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
lpolpolsatN  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )

Proof of Theorem lpolpolsatN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolpolsat.o . . 3  |-  ( ph  -> 
._|_  e.  P )
2 lpolpolsat.w . . . 4  |-  ( ph  ->  W  e.  X )
3 eqid 2283 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2283 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
5 eqid 2283 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
6 lpolpolsat.a . . . . 5  |-  A  =  (LSAtoms `  W )
7 eqid 2283 . . . . 5  |-  (LSHyp `  W )  =  (LSHyp `  W )
8 lpolpolsat.p . . . . 5  |-  P  =  (LPol `  W )
93, 4, 5, 6, 7, 8islpolN 31673 . . . 4  |-  ( W  e.  X  ->  (  ._|_  e.  P  <->  (  ._|_  : ~P ( Base `  W
) --> ( LSubSp `  W
)  /\  ( (  ._|_  `  ( Base `  W
) )  =  {
( 0g `  W
) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
102, 9syl 15 . . 3  |-  ( ph  ->  (  ._|_  e.  P  <->  ( 
._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  (
(  ._|_  `  ( Base `  W ) )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) ) ) )
111, 10mpbid 201 . 2  |-  ( ph  ->  (  ._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  ( (  ._|_  `  ( Base `  W ) )  =  { ( 0g
`  W ) }  /\  A. x A. y ( ( x 
C_  ( Base `  W
)  /\  y  C_  ( Base `  W )  /\  x  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x ) ) ) )
12 simpr3 963 . . 3  |-  ( ( 
._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  (
(  ._|_  `  ( Base `  W ) )  =  { ( 0g `  W ) }  /\  A. x A. y ( ( x  C_  ( Base `  W )  /\  y  C_  ( Base `  W
)  /\  x  C_  y
)  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) ) )  ->  A. x  e.  A  ( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x ) )
13 lpolpolsat.q . . . 4  |-  ( ph  ->  Q  e.  A )
14 fveq2 5525 . . . . . . 7  |-  ( x  =  Q  ->  (  ._|_  `  x )  =  (  ._|_  `  Q ) )
1514eleq1d 2349 . . . . . 6  |-  ( x  =  Q  ->  (
(  ._|_  `  x )  e.  (LSHyp `  W )  <->  ( 
._|_  `  Q )  e.  (LSHyp `  W )
) )
1614fveq2d 5529 . . . . . . 7  |-  ( x  =  Q  ->  (  ._|_  `  (  ._|_  `  x
) )  =  ( 
._|_  `  (  ._|_  `  Q
) ) )
17 id 19 . . . . . . 7  |-  ( x  =  Q  ->  x  =  Q )
1816, 17eqeq12d 2297 . . . . . 6  |-  ( x  =  Q  ->  (
(  ._|_  `  (  ._|_  `  x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) )
1915, 18anbi12d 691 . . . . 5  |-  ( x  =  Q  ->  (
( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  <->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q
) )  =  Q ) ) )
2019rspcv 2880 . . . 4  |-  ( Q  e.  A  ->  ( A. x  e.  A  ( (  ._|_  `  x
)  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  ->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) ) )
2113, 20syl 15 . . 3  |-  ( ph  ->  ( A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x )  ->  ( (  ._|_  `  Q )  e.  (LSHyp `  W )  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q ) ) )
22 simpr 447 . . 3  |-  ( ( (  ._|_  `  Q )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )
2312, 21, 22syl56 30 . 2  |-  ( ph  ->  ( (  ._|_  : ~P ( Base `  W ) --> ( LSubSp `  W )  /\  ( (  ._|_  `  ( Base `  W ) )  =  { ( 0g
`  W ) }  /\  A. x A. y ( ( x 
C_  ( Base `  W
)  /\  y  C_  ( Base `  W )  /\  x  C_  y )  ->  (  ._|_  `  y
)  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  (LSHyp `  W
)  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x ) ) )  ->  (  ._|_  `  (  ._|_  `  Q
) )  =  Q ) )
2411, 23mpd 14 1  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   ~Pcpw 3625   {csn 3640   -->wf 5251   ` cfv 5255   Basecbs 13148   0gc0g 13400   LSubSpclss 15689  LSAtomsclsa 29164  LSHypclsh 29165  LPolclpoN 31670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-lpolN 31671
  Copyright terms: Public domain W3C validator