MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Unicode version

Theorem lpval 16887
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
lpval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem lpval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5  |-  X  = 
U. J
21lpfval 16886 . . . 4  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) )
32fveq1d 5543 . . 3  |-  ( J  e.  Top  ->  (
( limPt `  J ) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } ) `  S ) )
43adantr 451 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } ) `  S ) )
51topopn 16668 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4190 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 15 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 471 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 ssdifss 3320 . . . . . 6  |-  ( S 
C_  X  ->  ( S  \  { x }
)  C_  X )
101clsss3 16812 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( ( cls `  J ) `  ( S  \  { x } ) )  C_  X )
1110sseld 3192 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
129, 11sylan2 460 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  X ) )
1312abssdv 3260 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  C_  X
)
145adantr 451 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  J )
15 ssexg 4176 . . . 4  |-  ( ( { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) }  C_  X  /\  X  e.  J
)  ->  { x  |  x  e.  (
( cls `  J
) `  ( S  \  { x } ) ) }  e.  _V )
1613, 14, 15syl2anc 642 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) }  e.  _V )
17 difeq1 3300 . . . . . . 7  |-  ( y  =  S  ->  (
y  \  { x } )  =  ( S  \  { x } ) )
1817fveq2d 5545 . . . . . 6  |-  ( y  =  S  ->  (
( cls `  J
) `  ( y  \  { x } ) )  =  ( ( cls `  J ) `
 ( S  \  { x } ) ) )
1918eleq2d 2363 . . . . 5  |-  ( y  =  S  ->  (
x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) )  <->  x  e.  (
( cls `  J
) `  ( S  \  { x } ) ) ) )
2019abbidv 2410 . . . 4  |-  ( y  =  S  ->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) }  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
21 eqid 2296 . . . 4  |-  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J
) `  ( y  \  { x } ) ) } )  =  ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `
 ( y  \  { x } ) ) } )
2220, 21fvmptg 5616 . . 3  |-  ( ( S  e.  ~P X  /\  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) }  e.  _V )  ->  ( ( y  e.  ~P X  |->  { x  |  x  e.  ( ( cls `  J ) `  (
y  \  { x } ) ) } ) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `
 ( S  \  { x } ) ) } )
238, 16, 22syl2anc 642 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  { x  |  x  e.  (
( cls `  J
) `  ( y  \  { x } ) ) } ) `  S )  =  {
x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } )
244, 23eqtrd 2328 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   _Vcvv 2801    \ cdif 3162    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843    e. cmpt 4093   ` cfv 5271   Topctop 16647   clsccl 16771   limPtclp 16882
This theorem is referenced by:  islp  16888  lpsscls  16889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 16652  df-cld 16772  df-cls 16774  df-lp 16884
  Copyright terms: Public domain W3C validator