Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Unicode version

Theorem lsat0cv 29832
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o  |-  .0.  =  ( 0g `  W )
lsat0cv.s  |-  S  =  ( LSubSp `  W )
lsat0cv.a  |-  A  =  (LSAtoms `  W )
lsat0cv.c  |-  C  =  (  <oLL  `  W )
lsat0cv.w  |-  ( ph  ->  W  e.  LVec )
lsat0cv.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lsat0cv  |-  ( ph  ->  ( U  e.  A  <->  {  .0.  } C U ) )

Proof of Theorem lsat0cv
Dummy variables  x  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3  |-  .0.  =  ( 0g `  W )
2 lsat0cv.a . . 3  |-  A  =  (LSAtoms `  W )
3 lsat0cv.c . . 3  |-  C  =  (  <oLL  `  W )
4 lsat0cv.w . . . 4  |-  ( ph  ->  W  e.  LVec )
54adantr 453 . . 3  |-  ( (
ph  /\  U  e.  A )  ->  W  e.  LVec )
6 simpr 449 . . 3  |-  ( (
ph  /\  U  e.  A )  ->  U  e.  A )
71, 2, 3, 5, 6lsatcv0 29830 . 2  |-  ( (
ph  /\  U  e.  A )  ->  {  .0.  } C U )
8 lsat0cv.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
9 lveclmod 16179 . . . . . . . . 9  |-  ( W  e.  LVec  ->  W  e. 
LMod )
104, 9syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  LMod )
1110adantr 453 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  W  e.  LMod )
121, 8lsssn0 16025 . . . . . . . . 9  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )
1310, 12syl 16 . . . . . . . 8  |-  ( ph  ->  {  .0.  }  e.  S )
1413adantr 453 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  }  e.  S
)
15 lsat0cv.u . . . . . . . 8  |-  ( ph  ->  U  e.  S )
1615adantr 453 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  U  e.  S )
17 simpr 449 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  } C U )
188, 3, 11, 14, 16, 17lcvpss 29823 . . . . . 6  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  }  C.  U
)
19 pssnel 3694 . . . . . 6  |-  ( {  .0.  }  C.  U  ->  E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )
2018, 19syl 16 . . . . 5  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )
2115ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  U  e.  S )
22 simprl 734 . . . . . . . . . . 11  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  U )
23 eqid 2437 . . . . . . . . . . . 12  |-  ( Base `  W )  =  (
Base `  W )
2423, 8lssel 16015 . . . . . . . . . . 11  |-  ( ( U  e.  S  /\  x  e.  U )  ->  x  e.  ( Base `  W ) )
2521, 22, 24syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  ( Base `  W )
)
26 elsn 3830 . . . . . . . . . . . . . 14  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
2726biimpri 199 . . . . . . . . . . . . 13  |-  ( x  =  .0.  ->  x  e.  {  .0.  } )
2827necon3bi 2646 . . . . . . . . . . . 12  |-  ( -.  x  e.  {  .0.  }  ->  x  =/=  .0.  )
2928adantl 454 . . . . . . . . . . 11  |-  ( ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  x  =/=  .0.  )
3029adantl 454 . . . . . . . . . 10  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  =/=  .0.  )
31 eldifsn 3928 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  <->  ( x  e.  ( Base `  W
)  /\  x  =/=  .0.  ) )
3225, 30, 31sylanbrc 647 . . . . . . . . 9  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )
3332, 22jca 520 . . . . . . . 8  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  ( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) )
3433ex 425 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  ( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) ) )
3534eximdv 1633 . . . . . 6  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  E. x
( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) ) )
36 df-rex 2712 . . . . . 6  |-  ( E. x  e.  ( (
Base `  W )  \  {  .0.  } ) x  e.  U  <->  E. x
( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) )
3735, 36syl6ibr 220 . . . . 5  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) x  e.  U
) )
3820, 37mpd 15 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x  e.  (
( Base `  W )  \  {  .0.  } ) x  e.  U )
39 simpllr 737 . . . . . . . 8  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  {  .0.  } C U )
408, 3, 4, 13, 15lcvbr2 29821 . . . . . . . . . . 11  |-  ( ph  ->  ( {  .0.  } C U  <->  ( {  .0.  } 
C.  U  /\  A. s  e.  S  (
( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4140adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( {  .0.  } C U  <->  ( {  .0.  } 
C.  U  /\  A. s  e.  S  (
( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4241ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  ( {  .0.  } C U  <-> 
( {  .0.  }  C.  U  /\  A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4310ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  W  e.  LMod )
4443ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  W  e.  LMod )
45 eldifi 3470 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  ->  x  e.  ( Base `  W
) )
4645adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  x  e.  ( Base `  W
) )
4746ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  e.  (
Base `  W )
)
48 eqid 2437 . . . . . . . . . . . . . . . 16  |-  ( LSpan `  W )  =  (
LSpan `  W )
4923, 8, 48lspsncl 16054 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
( LSpan `  W ) `  { x } )  e.  S )
5044, 47, 49syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W ) `  {
x } )  e.  S )
511, 8lss0ss 16026 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( LSpan `  W ) `  { x } )  e.  S )  ->  {  .0.  }  C_  (
( LSpan `  W ) `  { x } ) )
5244, 50, 51syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  C_  ( ( LSpan `  W
) `  { x } ) )
53 eldifsni 3929 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  ->  x  =/=  .0.  )
5453adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  x  =/=  .0.  )
5554ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  =/=  .0.  )
5623, 1, 48lspsneq0 16089 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
( ( LSpan `  W
) `  { x } )  =  {  .0.  }  <->  x  =  .0.  ) )
5744, 47, 56syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( (
LSpan `  W ) `  { x } )  =  {  .0.  }  <->  x  =  .0.  ) )
5857necon3bid 2637 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( (
LSpan `  W ) `  { x } )  =/=  {  .0.  }  <->  x  =/=  .0.  ) )
5955, 58mpbird 225 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W ) `  {
x } )  =/= 
{  .0.  } )
6059necomd 2688 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  =/=  ( ( LSpan `  W
) `  { x } ) )
61 df-pss 3337 . . . . . . . . . . . . 13  |-  ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  <-> 
( {  .0.  }  C_  ( ( LSpan `  W
) `  { x } )  /\  {  .0.  }  =/=  ( (
LSpan `  W ) `  { x } ) ) )
6252, 60, 61sylanbrc 647 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  C.  ( ( LSpan `  W
) `  { x } ) )
6315ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  U  e.  S )
6463ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  U  e.  S
)
65 simplr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  e.  U
)
668, 48, 44, 64, 65lspsnel5a 16073 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W ) `  {
x } )  C_  U )
6762, 66jca 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( {  .0.  } 
C.  ( ( LSpan `  W ) `  {
x } )  /\  ( ( LSpan `  W
) `  { x } )  C_  U
) )
68 psseq2 3436 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( {  .0.  }  C.  s  <->  {  .0.  }  C.  ( ( LSpan `  W
) `  { x } ) ) )
69 sseq1 3370 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( s  C_  U  <->  ( ( LSpan `  W ) `  { x } ) 
C_  U ) )
7068, 69anbi12d 693 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( ( {  .0.  } 
C.  s  /\  s  C_  U )  <->  ( {  .0.  }  C.  ( (
LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U ) ) )
71 eqeq1 2443 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( s  =  U  <-> 
( ( LSpan `  W
) `  { x } )  =  U ) )
7270, 71imbi12d 313 . . . . . . . . . . . . 13  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  <->  ( ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U )  ->  (
( LSpan `  W ) `  { x } )  =  U ) ) )
7372rspcv 3049 . . . . . . . . . . . 12  |-  ( ( ( LSpan `  W ) `  { x } )  e.  S  ->  ( A. s  e.  S  ( ( {  .0.  } 
C.  s  /\  s  C_  U )  ->  s  =  U )  ->  (
( {  .0.  }  C.  ( ( LSpan `  W
) `  { x } )  /\  (
( LSpan `  W ) `  { x } ) 
C_  U )  -> 
( ( LSpan `  W
) `  { x } )  =  U ) ) )
7450, 73syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  ->  ( ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U )  ->  (
( LSpan `  W ) `  { x } )  =  U ) ) )
7567, 74mpid 40 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  ->  ( ( LSpan `  W ) `  { x } )  =  U ) )
7675expimpd 588 . . . . . . . . 9  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  (
( {  .0.  }  C.  U  /\  A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) )  ->  (
( LSpan `  W ) `  { x } )  =  U ) )
7742, 76sylbid 208 . . . . . . . 8  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  ( {  .0.  } C U  ->  ( ( LSpan `  W ) `  {
x } )  =  U ) )
7839, 77mpd 15 . . . . . . 7  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  (
( LSpan `  W ) `  { x } )  =  U )
7978eqcomd 2442 . . . . . 6  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  U  =  ( ( LSpan `  W ) `  {
x } ) )
8079ex 425 . . . . 5  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  (
x  e.  U  ->  U  =  ( ( LSpan `  W ) `  { x } ) ) )
8180reximdva 2819 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) x  e.  U  ->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { x } ) ) )
8238, 81mpd 15 . . 3  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x  e.  (
( Base `  W )  \  {  .0.  } ) U  =  ( (
LSpan `  W ) `  { x } ) )
834adantr 453 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  ->  W  e.  LVec )
8423, 48, 1, 2islsat 29790 . . . 4  |-  ( W  e.  LVec  ->  ( U  e.  A  <->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { x } ) ) )
8583, 84syl 16 . . 3  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( U  e.  A  <->  E. x  e.  ( (
Base `  W )  \  {  .0.  } ) U  =  ( (
LSpan `  W ) `  { x } ) ) )
8682, 85mpbird 225 . 2  |-  ( (
ph  /\  {  .0.  } C U )  ->  U  e.  A )
877, 86impbida 807 1  |-  ( ph  ->  ( U  e.  A  <->  {  .0.  } C U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   E.wrex 2707    \ cdif 3318    C_ wss 3321    C. wpss 3322   {csn 3815   class class class wbr 4213   ` cfv 5455   Basecbs 13470   0gc0g 13724   LModclmod 15951   LSubSpclss 16009   LSpanclspn 16048   LVecclvec 16175  LSAtomsclsa 29773    <oLL clcv 29817
This theorem is referenced by:  mapdcnvatN  32465  mapdat  32466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-tpos 6480  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-3 10060  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-0g 13728  df-mnd 14691  df-grp 14813  df-minusg 14814  df-sbg 14815  df-cmn 15415  df-abl 15416  df-mgp 15650  df-rng 15664  df-ur 15666  df-oppr 15729  df-dvdsr 15747  df-unit 15748  df-invr 15778  df-drng 15838  df-lmod 15953  df-lss 16010  df-lsp 16049  df-lvec 16176  df-lsatoms 29775  df-lcv 29818
  Copyright terms: Public domain W3C validator