Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Unicode version

Theorem lsateln0 29185
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z  |-  .0.  =  ( 0g `  W )
lsateln0.a  |-  A  =  (LSAtoms `  W )
lsateln0.w  |-  ( ph  ->  W  e.  LMod )
lsateln0.u  |-  ( ph  ->  U  e.  A )
Assertion
Ref Expression
lsateln0  |-  ( ph  ->  E. v  e.  U  v  =/=  .0.  )
Distinct variable groups:    v, U    v, W    v,  .0.    ph, v
Allowed substitution hint:    A( v)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4  |-  ( ph  ->  U  e.  A )
2 lsateln0.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
3 eqid 2283 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2283 . . . . . 6  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lsateln0.z . . . . . 6  |-  .0.  =  ( 0g `  W )
6 lsateln0.a . . . . . 6  |-  A  =  (LSAtoms `  W )
73, 4, 5, 6islsat 29181 . . . . 5  |-  ( W  e.  LMod  ->  ( U  e.  A  <->  E. v  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { v } ) ) )
82, 7syl 15 . . . 4  |-  ( ph  ->  ( U  e.  A  <->  E. v  e.  ( (
Base `  W )  \  {  .0.  } ) U  =  ( (
LSpan `  W ) `  { v } ) ) )
91, 8mpbid 201 . . 3  |-  ( ph  ->  E. v  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { v } ) )
10 eldifi 3298 . . . . . 6  |-  ( v  e.  ( ( Base `  W )  \  {  .0.  } )  ->  v  e.  ( Base `  W
) )
113, 4lspsnid 15750 . . . . . 6  |-  ( ( W  e.  LMod  /\  v  e.  ( Base `  W
) )  ->  v  e.  ( ( LSpan `  W
) `  { v } ) )
122, 10, 11syl2an 463 . . . . 5  |-  ( (
ph  /\  v  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  v  e.  ( ( LSpan `  W
) `  { v } ) )
13 eleq2 2344 . . . . 5  |-  ( U  =  ( ( LSpan `  W ) `  {
v } )  -> 
( v  e.  U  <->  v  e.  ( ( LSpan `  W ) `  {
v } ) ) )
1412, 13syl5ibrcom 213 . . . 4  |-  ( (
ph  /\  v  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  ( U  =  ( ( LSpan `  W ) `  { v } )  ->  v  e.  U
) )
1514reximdva 2655 . . 3  |-  ( ph  ->  ( E. v  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { v } )  ->  E. v  e.  ( ( Base `  W
)  \  {  .0.  } ) v  e.  U
) )
169, 15mpd 14 . 2  |-  ( ph  ->  E. v  e.  ( ( Base `  W
)  \  {  .0.  } ) v  e.  U
)
17 eldifsn 3749 . . . . . . 7  |-  ( v  e.  ( ( Base `  W )  \  {  .0.  } )  <->  ( v  e.  ( Base `  W
)  /\  v  =/=  .0.  ) )
1817anbi1i 676 . . . . . 6  |-  ( ( v  e.  ( (
Base `  W )  \  {  .0.  } )  /\  v  e.  U
)  <->  ( ( v  e.  ( Base `  W
)  /\  v  =/=  .0.  )  /\  v  e.  U ) )
19 anass 630 . . . . . 6  |-  ( ( ( v  e.  (
Base `  W )  /\  v  =/=  .0.  )  /\  v  e.  U
)  <->  ( v  e.  ( Base `  W
)  /\  ( v  =/=  .0.  /\  v  e.  U ) ) )
2018, 19bitri 240 . . . . 5  |-  ( ( v  e.  ( (
Base `  W )  \  {  .0.  } )  /\  v  e.  U
)  <->  ( v  e.  ( Base `  W
)  /\  ( v  =/=  .0.  /\  v  e.  U ) ) )
2120simprbi 450 . . . 4  |-  ( ( v  e.  ( (
Base `  W )  \  {  .0.  } )  /\  v  e.  U
)  ->  ( v  =/=  .0.  /\  v  e.  U ) )
2221ancomd 438 . . 3  |-  ( ( v  e.  ( (
Base `  W )  \  {  .0.  } )  /\  v  e.  U
)  ->  ( v  e.  U  /\  v  =/=  .0.  ) )
2322reximi2 2649 . 2  |-  ( E. v  e.  ( (
Base `  W )  \  {  .0.  } ) v  e.  U  ->  E. v  e.  U  v  =/=  .0.  )
2416, 23syl 15 1  |-  ( ph  ->  E. v  e.  U  v  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    \ cdif 3149   {csn 3640   ` cfv 5255   Basecbs 13148   0gc0g 13400   LModclmod 15627   LSpanclspn 15728  LSAtomsclsa 29164
This theorem is referenced by:  dvh1dim  31632  dochkr1  31668  dochkr1OLDN  31669  lcfrlem40  31772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-0g 13404  df-mnd 14367  df-grp 14489  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lsatoms 29166
  Copyright terms: Public domain W3C validator