Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpat Unicode version

Theorem lshpat 29064
Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 30050 analog.) TODO: This changes  U C V in l1cvpat 29062 and l1cvat 29063 to  U  e.  H, which in turn change  U  e.  H in islshpcv 29061 to  U C V, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lshpat.s  |-  S  =  ( LSubSp `  W )
lshpat.p  |-  .(+)  =  (
LSSum `  W )
ishpat.h  |-  H  =  (LSHyp `  W )
lshpat.a  |-  A  =  (LSAtoms `  W )
lshpat.w  |-  ( ph  ->  W  e.  LVec )
lshpat.l  |-  ( ph  ->  U  e.  H )
lshpat.q  |-  ( ph  ->  Q  e.  A )
lshpat.r  |-  ( ph  ->  R  e.  A )
lshpat.n  |-  ( ph  ->  Q  =/=  R )
lshpat.m  |-  ( ph  ->  -.  Q  C_  U
)
Assertion
Ref Expression
lshpat  |-  ( ph  ->  ( ( Q  .(+)  R )  i^i  U )  e.  A )

Proof of Theorem lshpat
StepHypRef Expression
1 eqid 2316 . 2  |-  ( Base `  W )  =  (
Base `  W )
2 lshpat.s . 2  |-  S  =  ( LSubSp `  W )
3 lshpat.p . 2  |-  .(+)  =  (
LSSum `  W )
4 lshpat.a . 2  |-  A  =  (LSAtoms `  W )
5 eqid 2316 . 2  |-  (  <oLL  `  W
)  =  (  <oLL  `  W
)
6 lshpat.w . 2  |-  ( ph  ->  W  e.  LVec )
7 lshpat.l . . . 4  |-  ( ph  ->  U  e.  H )
8 ishpat.h . . . . 5  |-  H  =  (LSHyp `  W )
91, 2, 8, 5, 6islshpcv 29061 . . . 4  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U (  <oLL  `  W ) ( Base `  W
) ) ) )
107, 9mpbid 201 . . 3  |-  ( ph  ->  ( U  e.  S  /\  U (  <oLL  `  W ) ( Base `  W
) ) )
1110simpld 445 . 2  |-  ( ph  ->  U  e.  S )
12 lshpat.q . 2  |-  ( ph  ->  Q  e.  A )
13 lshpat.r . 2  |-  ( ph  ->  R  e.  A )
14 lshpat.n . 2  |-  ( ph  ->  Q  =/=  R )
1510simprd 449 . 2  |-  ( ph  ->  U (  <oLL  `  W ) ( Base `  W
) )
16 lshpat.m . 2  |-  ( ph  ->  -.  Q  C_  U
)
171, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16l1cvat 29063 1  |-  ( ph  ->  ( ( Q  .(+)  R )  i^i  U )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479    i^i cin 3185    C_ wss 3186   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Basecbs 13195   LSSumclsm 14994   LSubSpclss 15738   LVecclvec 15904  LSAtomsclsa 28982  LSHypclsh 28983    <oLL clcv 29026
This theorem is referenced by:  lclkrlem2a  31515  lcfrlem20  31570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-tpos 6276  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-0g 13453  df-mre 13537  df-mrc 13538  df-acs 13540  df-mnd 14416  df-submnd 14465  df-grp 14538  df-minusg 14539  df-sbg 14540  df-subg 14667  df-cntz 14842  df-oppg 14868  df-lsm 14996  df-cmn 15140  df-abl 15141  df-mgp 15375  df-rng 15389  df-ur 15391  df-oppr 15454  df-dvdsr 15472  df-unit 15473  df-invr 15503  df-drng 15563  df-lmod 15678  df-lss 15739  df-lsp 15778  df-lvec 15905  df-lsatoms 28984  df-lshyp 28985  df-lcv 29027
  Copyright terms: Public domain W3C validator