Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshplss Unicode version

Theorem lshplss 29147
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshplss.s  |-  S  =  ( LSubSp `  W )
lshplss.h  |-  H  =  (LSHyp `  W )
lshplss.w  |-  ( ph  ->  W  e.  LMod )
lshplss.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshplss  |-  ( ph  ->  U  e.  S )

Proof of Theorem lshplss
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshplss.u . . 3  |-  ( ph  ->  U  e.  H )
2 lshplss.w . . . 4  |-  ( ph  ->  W  e.  LMod )
3 eqid 2380 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2380 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lshplss.s . . . . 5  |-  S  =  ( LSubSp `  W )
6 lshplss.h . . . . 5  |-  H  =  (LSHyp `  W )
73, 4, 5, 6islshp 29145 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
82, 7syl 16 . . 3  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( ( LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) ) )
91, 8mpbid 202 . 2  |-  ( ph  ->  ( U  e.  S  /\  U  =/=  ( Base `  W )  /\  E. v  e.  ( Base `  W ) ( (
LSpan `  W ) `  ( U  u.  { v } ) )  =  ( Base `  W
) ) )
109simp1d 969 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   E.wrex 2643    u. cun 3254   {csn 3750   ` cfv 5387   Basecbs 13389   LModclmod 15870   LSubSpclss 15928   LSpanclspn 15967  LSHypclsh 29141
This theorem is referenced by:  lshpnel  29149  lshpnelb  29150  lshpne0  29152  lshpdisj  29153  lshpcmp  29154  lshpsmreu  29275  lshpkrlem1  29276  lshpkrlem5  29280  lshpkr  29283  dochshpncl  31550  dochshpsat  31620  lclkrlem2f  31678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-iota 5351  df-fun 5389  df-fv 5395  df-lshyp 29143
  Copyright terms: Public domain W3C validator