MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmass Unicode version

Theorem lsmass 14979
Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmass  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( ( R  .(+)  T )  .(+)  U )  =  ( R  .(+)  ( T  .(+)  U )
) )

Proof of Theorem lsmass
Dummy variables  a 
c  x  y  z  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3 lsmub1.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  G )
41, 2, 3lsmval 14959 . . . . . . 7  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )
)  ->  ( R  .(+) 
T )  =  ran  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G ) b ) ) )
543adant3 975 . . . . . 6  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( R  .(+)  T )  =  ran  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G
) b ) ) )
65rexeqdv 2743 . . . . 5  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. y  e.  ( R  .(+)  T ) E. c  e.  U  x  =  ( y
( +g  `  G ) c )  <->  E. y  e.  ran  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G ) b ) ) E. c  e.  U  x  =  ( y ( +g  `  G ) c ) ) )
7 ovex 5883 . . . . . . 7  |-  ( a ( +g  `  G
) b )  e. 
_V
87rgen2w 2611 . . . . . 6  |-  A. a  e.  R  A. b  e.  T  ( a
( +g  `  G ) b )  e.  _V
9 eqid 2283 . . . . . . 7  |-  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G
) b ) )  =  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G ) b ) )
10 oveq1 5865 . . . . . . . . 9  |-  ( y  =  ( a ( +g  `  G ) b )  ->  (
y ( +g  `  G
) c )  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) )
1110eqeq2d 2294 . . . . . . . 8  |-  ( y  =  ( a ( +g  `  G ) b )  ->  (
x  =  ( y ( +g  `  G
) c )  <->  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
1211rexbidv 2564 . . . . . . 7  |-  ( y  =  ( a ( +g  `  G ) b )  ->  ( E. c  e.  U  x  =  ( y
( +g  `  G ) c )  <->  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
139, 12rexrnmpt2 5959 . . . . . 6  |-  ( A. a  e.  R  A. b  e.  T  (
a ( +g  `  G
) b )  e. 
_V  ->  ( E. y  e.  ran  ( a  e.  R ,  b  e.  T  |->  ( a ( +g  `  G ) b ) ) E. c  e.  U  x  =  ( y ( +g  `  G ) c )  <->  E. a  e.  R  E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
148, 13ax-mp 8 . . . . 5  |-  ( E. y  e.  ran  (
a  e.  R , 
b  e.  T  |->  ( a ( +g  `  G
) b ) ) E. c  e.  U  x  =  ( y
( +g  `  G ) c )  <->  E. a  e.  R  E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) )
156, 14syl6bb 252 . . . 4  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. y  e.  ( R  .(+)  T ) E. c  e.  U  x  =  ( y
( +g  `  G ) c )  <->  E. a  e.  R  E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
161, 2, 3lsmval 14959 . . . . . . . . . 10  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( T  .(+) 
U )  =  ran  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G ) c ) ) )
17163adant1 973 . . . . . . . . 9  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( T  .(+)  U )  =  ran  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G
) c ) ) )
1817rexeqdv 2743 . . . . . . . 8  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z )  <->  E. z  e.  ran  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G ) c ) ) x  =  ( a ( +g  `  G ) z ) ) )
19 ovex 5883 . . . . . . . . . 10  |-  ( b ( +g  `  G
) c )  e. 
_V
2019rgen2w 2611 . . . . . . . . 9  |-  A. b  e.  T  A. c  e.  U  ( b
( +g  `  G ) c )  e.  _V
21 eqid 2283 . . . . . . . . . 10  |-  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G
) c ) )  =  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G ) c ) )
22 oveq2 5866 . . . . . . . . . . 11  |-  ( z  =  ( b ( +g  `  G ) c )  ->  (
a ( +g  `  G
) z )  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) )
2322eqeq2d 2294 . . . . . . . . . 10  |-  ( z  =  ( b ( +g  `  G ) c )  ->  (
x  =  ( a ( +g  `  G
) z )  <->  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
2421, 23rexrnmpt2 5959 . . . . . . . . 9  |-  ( A. b  e.  T  A. c  e.  U  (
b ( +g  `  G
) c )  e. 
_V  ->  ( E. z  e.  ran  ( b  e.  T ,  c  e.  U  |->  ( b ( +g  `  G ) c ) ) x  =  ( a ( +g  `  G ) z )  <->  E. b  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
2520, 24ax-mp 8 . . . . . . . 8  |-  ( E. z  e.  ran  (
b  e.  T , 
c  e.  U  |->  ( b ( +g  `  G
) c ) ) x  =  ( a ( +g  `  G
) z )  <->  E. b  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) )
2618, 25syl6bb 252 . . . . . . 7  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z )  <->  E. b  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
2726adantr 451 . . . . . 6  |-  ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  a  e.  R )  ->  ( E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z )  <->  E. b  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
28 subgrcl 14626 . . . . . . . . . . 11  |-  ( R  e.  (SubGrp `  G
)  ->  G  e.  Grp )
29283ad2ant1 976 . . . . . . . . . 10  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  ->  G  e.  Grp )
3029ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  G  e.  Grp )
311subgss 14622 . . . . . . . . . . . 12  |-  ( R  e.  (SubGrp `  G
)  ->  R  C_  ( Base `  G ) )
32313ad2ant1 976 . . . . . . . . . . 11  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  ->  R  C_  ( Base `  G
) )
3332ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  R  C_  ( Base `  G ) )
34 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  a  e.  R )
3533, 34sseldd 3181 . . . . . . . . 9  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  a  e.  ( Base `  G )
)
361subgss 14622 . . . . . . . . . . . 12  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
37363ad2ant2 977 . . . . . . . . . . 11  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  ->  T  C_  ( Base `  G
) )
3837ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  T  C_  ( Base `  G ) )
39 simprl 732 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  b  e.  T )
4038, 39sseldd 3181 . . . . . . . . 9  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  b  e.  ( Base `  G )
)
411subgss 14622 . . . . . . . . . . . 12  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
42413ad2ant3 978 . . . . . . . . . . 11  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  ->  U  C_  ( Base `  G
) )
4342ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  U  C_  ( Base `  G ) )
44 simprr 733 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  c  e.  U )
4543, 44sseldd 3181 . . . . . . . . 9  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  c  e.  ( Base `  G )
)
461, 2grpass 14496 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( a  e.  (
Base `  G )  /\  b  e.  ( Base `  G )  /\  c  e.  ( Base `  G ) ) )  ->  ( ( a ( +g  `  G
) b ) ( +g  `  G ) c )  =  ( a ( +g  `  G
) ( b ( +g  `  G ) c ) ) )
4730, 35, 40, 45, 46syl13anc 1184 . . . . . . . 8  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  ( (
a ( +g  `  G
) b ) ( +g  `  G ) c )  =  ( a ( +g  `  G
) ( b ( +g  `  G ) c ) ) )
4847eqeq2d 2294 . . . . . . 7  |-  ( ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  a  e.  R )  /\  (
b  e.  T  /\  c  e.  U )
)  ->  ( x  =  ( ( a ( +g  `  G
) b ) ( +g  `  G ) c )  <->  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
49482rexbidva 2584 . . . . . 6  |-  ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  a  e.  R )  ->  ( E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G
) c )  <->  E. b  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) ( b ( +g  `  G
) c ) ) ) )
5027, 49bitr4d 247 . . . . 5  |-  ( ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  /\  a  e.  R )  ->  ( E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z )  <->  E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
5150rexbidva 2560 . . . 4  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. a  e.  R  E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z )  <->  E. a  e.  R  E. b  e.  T  E. c  e.  U  x  =  ( ( a ( +g  `  G ) b ) ( +g  `  G ) c ) ) )
5215, 51bitr4d 247 . . 3  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( E. y  e.  ( R  .(+)  T ) E. c  e.  U  x  =  ( y
( +g  `  G ) c )  <->  E. a  e.  R  E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z ) ) )
53 grpmnd 14494 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
5429, 53syl 15 . . . . 5  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  ->  G  e.  Mnd )
551, 3lsmssv 14954 . . . . 5  |-  ( ( G  e.  Mnd  /\  R  C_  ( Base `  G
)  /\  T  C_  ( Base `  G ) )  ->  ( R  .(+)  T )  C_  ( Base `  G ) )
5654, 32, 37, 55syl3anc 1182 . . . 4  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( R  .(+)  T ) 
C_  ( Base `  G
) )
571, 2, 3lsmelvalx 14951 . . . 4  |-  ( ( G  e.  Grp  /\  ( R  .(+)  T ) 
C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( x  e.  ( ( R  .(+)  T )  .(+)  U )  <->  E. y  e.  ( R 
.(+)  T ) E. c  e.  U  x  =  ( y ( +g  `  G ) c ) ) )
5829, 56, 42, 57syl3anc 1182 . . 3  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( x  e.  ( ( R  .(+)  T ) 
.(+)  U )  <->  E. y  e.  ( R  .(+)  T ) E. c  e.  U  x  =  ( y
( +g  `  G ) c ) ) )
591, 3lsmssv 14954 . . . . 5  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
6054, 37, 42, 59syl3anc 1182 . . . 4  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( T  .(+)  U ) 
C_  ( Base `  G
) )
611, 2, 3lsmelvalx 14951 . . . 4  |-  ( ( G  e.  Grp  /\  R  C_  ( Base `  G
)  /\  ( T  .(+) 
U )  C_  ( Base `  G ) )  ->  ( x  e.  ( R  .(+)  ( T 
.(+)  U ) )  <->  E. a  e.  R  E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z ) ) )
6229, 32, 60, 61syl3anc 1182 . . 3  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( x  e.  ( R  .(+)  ( T  .(+) 
U ) )  <->  E. a  e.  R  E. z  e.  ( T  .(+)  U ) x  =  ( a ( +g  `  G
) z ) ) )
6352, 58, 623bitr4d 276 . 2  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( x  e.  ( ( R  .(+)  T ) 
.(+)  U )  <->  x  e.  ( R  .(+)  ( T 
.(+)  U ) ) ) )
6463eqrdv 2281 1  |-  ( ( R  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G ) )  -> 
( ( R  .(+)  T )  .(+)  U )  =  ( R  .(+)  ( T  .(+)  U )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   ran crn 4690   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   +g cplusg 13208   Mndcmnd 14361   Grpcgrp 14362  SubGrpcsubg 14615   LSSumclsm 14945
This theorem is referenced by:  lsm4  15152  pgpfac1lem3  15312  lsatcvat3  28615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-mnd 14367  df-grp 14489  df-subg 14618  df-lsm 14947
  Copyright terms: Public domain W3C validator