MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmfval Unicode version

Theorem lsmfval 14949
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v  |-  B  =  ( Base `  G
)
lsmfval.a  |-  .+  =  ( +g  `  G )
lsmfval.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmfval  |-  ( G  e.  V  ->  .(+)  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
Distinct variable groups:    u, t, x, y,  .+    t, B, u, x, y    t, G, u, x, y
Allowed substitution hints:    .(+) ( x, y, u, t)    V( x, y, u, t)

Proof of Theorem lsmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lsmfval.s . 2  |-  .(+)  =  (
LSSum `  G )
2 elex 2796 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
3 fveq2 5525 . . . . . . 7  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
4 lsmfval.v . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4syl6eqr 2333 . . . . . 6  |-  ( w  =  G  ->  ( Base `  w )  =  B )
65pweqd 3630 . . . . 5  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
7 fveq2 5525 . . . . . . . . . 10  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
8 lsmfval.a . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
97, 8syl6eqr 2333 . . . . . . . . 9  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
109oveqd 5875 . . . . . . . 8  |-  ( w  =  G  ->  (
x ( +g  `  w
) y )  =  ( x  .+  y
) )
11103ad2ant1 976 . . . . . . 7  |-  ( ( w  =  G  /\  x  e.  t  /\  y  e.  u )  ->  ( x ( +g  `  w ) y )  =  ( x  .+  y ) )
1211mpt2eq3dva 5912 . . . . . 6  |-  ( w  =  G  ->  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w
) y ) )  =  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )
1312rneqd 4906 . . . . 5  |-  ( w  =  G  ->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) )  =  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )
146, 6, 13mpt2eq123dv 5910 . . . 4  |-  ( w  =  G  ->  (
t  e.  ~P ( Base `  w ) ,  u  e.  ~P ( Base `  w )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) ) )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
15 df-lsm 14947 . . . 4  |-  LSSum  =  ( w  e.  _V  |->  ( t  e.  ~P ( Base `  w ) ,  u  e.  ~P ( Base `  w )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) ) ) )
16 fvex 5539 . . . . . . 7  |-  ( Base `  G )  e.  _V
174, 16eqeltri 2353 . . . . . 6  |-  B  e. 
_V
1817pwex 4193 . . . . 5  |-  ~P B  e.  _V
1918, 18mpt2ex 6198 . . . 4  |-  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) )  e.  _V
2014, 15, 19fvmpt 5602 . . 3  |-  ( G  e.  _V  ->  ( LSSum `  G )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
212, 20syl 15 . 2  |-  ( G  e.  V  ->  ( LSSum `  G )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
221, 21syl5eq 2327 1  |-  ( G  e.  V  ->  .(+)  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x  .+  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   ~Pcpw 3625   ran crn 4690   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   +g cplusg 13208   LSSumclsm 14945
This theorem is referenced by:  lsmvalx  14950  oppglsm  14953  lsmpropd  14986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-lsm 14947
  Copyright terms: Public domain W3C validator