MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmidm Structured version   Unicode version

Theorem lsmidm 15288
Description: Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmub1.p  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmidm  |-  ( U  e.  (SubGrp `  G
)  ->  ( U  .(+) 
U )  =  U )

Proof of Theorem lsmidm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2435 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3 lsmub1.p . . . . 5  |-  .(+)  =  (
LSSum `  G )
41, 2, 3lsmval 15274 . . . 4  |-  ( ( U  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( U  .(+) 
U )  =  ran  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) )
54anidms 627 . . 3  |-  ( U  e.  (SubGrp `  G
)  ->  ( U  .(+) 
U )  =  ran  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) )
62subgcl 14946 . . . . . . 7  |-  ( ( U  e.  (SubGrp `  G )  /\  x  e.  U  /\  y  e.  U )  ->  (
x ( +g  `  G
) y )  e.  U )
763expb 1154 . . . . . 6  |-  ( ( U  e.  (SubGrp `  G )  /\  (
x  e.  U  /\  y  e.  U )
)  ->  ( x
( +g  `  G ) y )  e.  U
)
87ralrimivva 2790 . . . . 5  |-  ( U  e.  (SubGrp `  G
)  ->  A. x  e.  U  A. y  e.  U  ( x
( +g  `  G ) y )  e.  U
)
9 eqid 2435 . . . . . 6  |-  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G
) y ) )  =  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) )
109fmpt2 6410 . . . . 5  |-  ( A. x  e.  U  A. y  e.  U  (
x ( +g  `  G
) y )  e.  U  <->  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) : ( U  X.  U
) --> U )
118, 10sylib 189 . . . 4  |-  ( U  e.  (SubGrp `  G
)  ->  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) : ( U  X.  U
) --> U )
12 frn 5589 . . . 4  |-  ( ( x  e.  U , 
y  e.  U  |->  ( x ( +g  `  G
) y ) ) : ( U  X.  U ) --> U  ->  ran  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G ) y ) )  C_  U )
1311, 12syl 16 . . 3  |-  ( U  e.  (SubGrp `  G
)  ->  ran  ( x  e.  U ,  y  e.  U  |->  ( x ( +g  `  G
) y ) ) 
C_  U )
145, 13eqsstrd 3374 . 2  |-  ( U  e.  (SubGrp `  G
)  ->  ( U  .(+) 
U )  C_  U
)
153lsmub1 15282 . . 3  |-  ( ( U  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  U  C_  ( U  .(+)  U ) )
1615anidms 627 . 2  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( U  .(+)  U ) )
1714, 16eqssd 3357 1  |-  ( U  e.  (SubGrp `  G
)  ->  ( U  .(+) 
U )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   A.wral 2697    C_ wss 3312    X. cxp 4868   ran crn 4871   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   Basecbs 13461   +g cplusg 13521  SubGrpcsubg 14930   LSSumclsm 15260
This theorem is referenced by:  lsmlub  15289  lspabs2  16184  lspabs3  16185  lsatcv0eq  29782  lsatcv1  29783  lsatcvat3  29787  dia2dimlem13  31811  dihjatcclem1  32153  dvh3dimatN  32174  dvh2dimatN  32175  mapdindp0  32454  mapdh6dN  32474  hdmap1l6d  32549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-subg 14933  df-lsm 15262
  Copyright terms: Public domain W3C validator