MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmpropd Unicode version

Theorem lsmpropd 15085
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
lsmpropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsmpropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsmpropd.p  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsmpropd.v1  |-  ( ph  ->  K  e.  _V )
lsmpropd.v2  |-  ( ph  ->  L  e.  _V )
Assertion
Ref Expression
lsmpropd  |-  ( ph  ->  ( LSSum `  K )  =  ( LSSum `  L
) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem lsmpropd
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 985 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  ph )
2 simp12 986 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  t  e.  ~P B
)
3 elpwi 3709 . . . . . . . . 9  |-  ( t  e.  ~P B  -> 
t  C_  B )
42, 3syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  t  C_  B )
5 simp2 956 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  x  e.  t )
64, 5sseldd 3257 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  x  e.  B )
7 simp13 987 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  u  e.  ~P B
)
8 elpwi 3709 . . . . . . . . 9  |-  ( u  e.  ~P B  ->  u  C_  B )
97, 8syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  u  C_  B )
10 simp3 957 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  y  e.  u )
119, 10sseldd 3257 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  y  e.  B )
12 lsmpropd.p . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
131, 6, 11, 12syl12anc 1180 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  /\  x  e.  t  /\  y  e.  u )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
1413mpt2eq3dva 5999 . . . . 5  |-  ( (
ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  -> 
( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) )  =  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L
) y ) ) )
1514rneqd 4988 . . . 4  |-  ( (
ph  /\  t  e.  ~P B  /\  u  e.  ~P B )  ->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) )  =  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L
) y ) ) )
1615mpt2eq3dva 5999 . . 3  |-  ( ph  ->  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K
) y ) ) )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
17 lsmpropd.b1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
1817pweqd 3706 . . . 4  |-  ( ph  ->  ~P B  =  ~P ( Base `  K )
)
19 mpt2eq12 5995 . . . 4  |-  ( ( ~P B  =  ~P ( Base `  K )  /\  ~P B  =  ~P ( Base `  K )
)  ->  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K
) y ) ) )  =  ( t  e.  ~P ( Base `  K ) ,  u  e.  ~P ( Base `  K
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) ) ) )
2018, 18, 19syl2anc 642 . . 3  |-  ( ph  ->  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K
) y ) ) )  =  ( t  e.  ~P ( Base `  K ) ,  u  e.  ~P ( Base `  K
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) ) ) )
21 lsmpropd.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
2221pweqd 3706 . . . 4  |-  ( ph  ->  ~P B  =  ~P ( Base `  L )
)
23 mpt2eq12 5995 . . . 4  |-  ( ( ~P B  =  ~P ( Base `  L )  /\  ~P B  =  ~P ( Base `  L )
)  ->  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L
) y ) ) )  =  ( t  e.  ~P ( Base `  L ) ,  u  e.  ~P ( Base `  L
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
2422, 22, 23syl2anc 642 . . 3  |-  ( ph  ->  ( t  e.  ~P B ,  u  e.  ~P B  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L
) y ) ) )  =  ( t  e.  ~P ( Base `  L ) ,  u  e.  ~P ( Base `  L
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
2516, 20, 243eqtr3d 2398 . 2  |-  ( ph  ->  ( t  e.  ~P ( Base `  K ) ,  u  e.  ~P ( Base `  K )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) ) )  =  ( t  e. 
~P ( Base `  L
) ,  u  e. 
~P ( Base `  L
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
26 lsmpropd.v1 . . 3  |-  ( ph  ->  K  e.  _V )
27 eqid 2358 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
28 eqid 2358 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
29 eqid 2358 . . . 4  |-  ( LSSum `  K )  =  (
LSSum `  K )
3027, 28, 29lsmfval 15048 . . 3  |-  ( K  e.  _V  ->  ( LSSum `  K )  =  ( t  e.  ~P ( Base `  K ) ,  u  e.  ~P ( Base `  K )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) ) ) )
3126, 30syl 15 . 2  |-  ( ph  ->  ( LSSum `  K )  =  ( t  e. 
~P ( Base `  K
) ,  u  e. 
~P ( Base `  K
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  K ) y ) ) ) )
32 lsmpropd.v2 . . 3  |-  ( ph  ->  L  e.  _V )
33 eqid 2358 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
34 eqid 2358 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
35 eqid 2358 . . . 4  |-  ( LSSum `  L )  =  (
LSSum `  L )
3633, 34, 35lsmfval 15048 . . 3  |-  ( L  e.  _V  ->  ( LSSum `  L )  =  ( t  e.  ~P ( Base `  L ) ,  u  e.  ~P ( Base `  L )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
3732, 36syl 15 . 2  |-  ( ph  ->  ( LSSum `  L )  =  ( t  e. 
~P ( Base `  L
) ,  u  e. 
~P ( Base `  L
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  L ) y ) ) ) )
3825, 31, 373eqtr4d 2400 1  |-  ( ph  ->  ( LSSum `  K )  =  ( LSSum `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   _Vcvv 2864    C_ wss 3228   ~Pcpw 3701   ran crn 4772   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   Basecbs 13245   +g cplusg 13305   LSSumclsm 15044
This theorem is referenced by:  hlhillsm  32218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-lsm 15046
  Copyright terms: Public domain W3C validator