Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsat Unicode version

Theorem lsmsat 29820
Description: Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 30616 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
Hypotheses
Ref Expression
lsmsat.o  |-  .0.  =  ( 0g `  W )
lsmsat.s  |-  S  =  ( LSubSp `  W )
lsmsat.p  |-  .(+)  =  (
LSSum `  W )
lsmsat.a  |-  A  =  (LSAtoms `  W )
lsmsat.w  |-  ( ph  ->  W  e.  LMod )
lsmsat.t  |-  ( ph  ->  T  e.  S )
lsmsat.u  |-  ( ph  ->  U  e.  S )
lsmsat.q  |-  ( ph  ->  Q  e.  A )
lsmsat.n  |-  ( ph  ->  T  =/=  {  .0.  } )
lsmsat.l  |-  ( ph  ->  Q  C_  ( T  .(+) 
U ) )
Assertion
Ref Expression
lsmsat  |-  ( ph  ->  E. p  e.  A  ( p  C_  T  /\  Q  C_  ( p  .(+)  U ) ) )
Distinct variable groups:    A, p    .(+) ,
p    Q, p    T, p    U, p    W, p
Allowed substitution hints:    ph( p)    S( p)    .0. ( p)

Proof of Theorem lsmsat
Dummy variables  q 
r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsat.q . . 3  |-  ( ph  ->  Q  e.  A )
2 lsmsat.w . . . 4  |-  ( ph  ->  W  e.  LMod )
3 eqid 2296 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2296 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lsmsat.o . . . . 5  |-  .0.  =  ( 0g `  W )
6 lsmsat.a . . . . 5  |-  A  =  (LSAtoms `  W )
73, 4, 5, 6islsat 29803 . . . 4  |-  ( W  e.  LMod  ->  ( Q  e.  A  <->  E. r  e.  ( ( Base `  W
)  \  {  .0.  } ) Q  =  ( ( LSpan `  W ) `  { r } ) ) )
82, 7syl 15 . . 3  |-  ( ph  ->  ( Q  e.  A  <->  E. r  e.  ( (
Base `  W )  \  {  .0.  } ) Q  =  ( (
LSpan `  W ) `  { r } ) ) )
91, 8mpbid 201 . 2  |-  ( ph  ->  E. r  e.  ( ( Base `  W
)  \  {  .0.  } ) Q  =  ( ( LSpan `  W ) `  { r } ) )
10 simp3 957 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  Q  =  ( ( LSpan `  W ) `  { r } ) )
11 lsmsat.l . . . . . . . . . 10  |-  ( ph  ->  Q  C_  ( T  .(+) 
U ) )
12113ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  Q  C_  ( T  .(+)  U ) )
1310, 12eqsstr3d 3226 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( ( LSpan `  W
) `  { r } )  C_  ( T  .(+)  U ) )
14 lsmsat.s . . . . . . . . 9  |-  S  =  ( LSubSp `  W )
1523ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  W  e.  LMod )
16 lsmsat.t . . . . . . . . . . 11  |-  ( ph  ->  T  e.  S )
17 lsmsat.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  S )
18 lsmsat.p . . . . . . . . . . . 12  |-  .(+)  =  (
LSSum `  W )
1914, 18lsmcl 15852 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )
202, 16, 17, 19syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( T  .(+)  U )  e.  S )
21203ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( T  .(+)  U )  e.  S )
22 eldifi 3311 . . . . . . . . . 10  |-  ( r  e.  ( ( Base `  W )  \  {  .0.  } )  ->  r  e.  ( Base `  W
) )
23223ad2ant2 977 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
r  e.  ( Base `  W ) )
243, 14, 4, 15, 21, 23lspsnel5 15768 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( r  e.  ( T  .(+)  U )  <->  ( ( LSpan `  W ) `  { r } ) 
C_  ( T  .(+)  U ) ) )
2513, 24mpbird 223 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
r  e.  ( T 
.(+)  U ) )
2614lsssssubg 15731 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
2715, 26syl 15 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  S  C_  (SubGrp `  W
) )
28163ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  T  e.  S )
2927, 28sseldd 3194 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  T  e.  (SubGrp `  W
) )
30173ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  U  e.  S )
3127, 30sseldd 3194 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  U  e.  (SubGrp `  W
) )
32 eqid 2296 . . . . . . . . 9  |-  ( +g  `  W )  =  ( +g  `  W )
3332, 18lsmelval 14976 . . . . . . . 8  |-  ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  ( r  e.  ( T  .(+)  U )  <->  E. y  e.  T  E. z  e.  U  r  =  ( y
( +g  `  W ) z ) ) )
3429, 31, 33syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( r  e.  ( T  .(+)  U )  <->  E. y  e.  T  E. z  e.  U  r  =  ( y ( +g  `  W ) z ) ) )
3525, 34mpbid 201 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  E. y  e.  T  E. z  e.  U  r  =  ( y
( +g  `  W ) z ) )
36 lsmsat.n . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  =/=  {  .0.  } )
375, 14lssne0 15724 . . . . . . . . . . . . . . . 16  |-  ( T  e.  S  ->  ( T  =/=  {  .0.  }  <->  E. q  e.  T  q  =/=  .0.  ) )
3816, 37syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  =/=  {  .0.  }  <->  E. q  e.  T  q  =/=  .0.  ) )
3936, 38mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  E. q  e.  T  q  =/=  .0.  )
4039adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  E. q  e.  T  q  =/=  .0.  )
41403ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  E. q  e.  T  q  =/=  .0.  )
4241adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =  .0.  )  ->  E. q  e.  T  q  =/=  .0.  )
432adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  W  e.  LMod )
44433ad2ant1 976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  W  e.  LMod )
4544adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  W  e.  LMod )
4616adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  T  e.  S )
47463ad2ant1 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  T  e.  S
)
4847adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  T  e.  S )
49 simpr2 962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  q  e.  T )
503, 14lssel 15711 . . . . . . . . . . . . . . . . 17  |-  ( ( T  e.  S  /\  q  e.  T )  ->  q  e.  ( Base `  W ) )
5148, 49, 50syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  q  e.  ( Base `  W
) )
52 simpr3 963 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  q  =/=  .0.  )
533, 4, 5, 6lsatlspsn2 29804 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  q  e.  ( Base `  W
)  /\  q  =/=  .0.  )  ->  ( (
LSpan `  W ) `  { q } )  e.  A )
5445, 51, 52, 53syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { q } )  e.  A )
5514, 4, 45, 48, 49lspsnel5a 15769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { q } ) 
C_  T )
56 simpl3 960 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  r  =  ( y ( +g  `  W ) z ) )
57 simpr1 961 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  y  =  .0.  )
5857oveq1d 5889 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
y ( +g  `  W
) z )  =  (  .0.  ( +g  `  W ) z ) )
5917adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  U  e.  S )
60593ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  U  e.  S
)
61 simp2r 982 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  z  e.  U
)
623, 14lssel 15711 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( U  e.  S  /\  z  e.  U )  ->  z  e.  ( Base `  W ) )
6360, 61, 62syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  z  e.  (
Base `  W )
)
6463adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  z  e.  ( Base `  W
) )
653, 32, 5lmod0vlid 15676 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e.  LMod  /\  z  e.  ( Base `  W
) )  ->  (  .0.  ( +g  `  W
) z )  =  z )
6645, 64, 65syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (  .0.  ( +g  `  W
) z )  =  z )
6756, 58, 663eqtrd 2332 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  r  =  z )
6867sneqd 3666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  { r }  =  { z } )
6968fveq2d 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { r } )  =  ( ( LSpan `  W ) `  {
z } ) )
7014, 4, 44, 60, 61lspsnel5a 15769 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
z } )  C_  U )
7170adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { z } ) 
C_  U )
7269, 71eqsstrd 3225 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { r } ) 
C_  U )
733, 4lspsnsubg 15753 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  q  e.  ( Base `  W
) )  ->  (
( LSpan `  W ) `  { q } )  e.  (SubGrp `  W
) )
7445, 51, 73syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { q } )  e.  (SubGrp `  W
) )
7545, 26syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  S  C_  (SubGrp `  W )
)
7660adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  U  e.  S )
7775, 76sseldd 3194 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  U  e.  (SubGrp `  W )
)
7818lsmub2 14984 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( LSpan `  W
) `  { q } )  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  U  C_  (
( ( LSpan `  W
) `  { q } )  .(+)  U ) )
7974, 77, 78syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  U  C_  ( ( ( LSpan `  W ) `  {
q } )  .(+)  U ) )
8072, 79sstrd 3202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  (
( LSpan `  W ) `  { r } ) 
C_  ( ( (
LSpan `  W ) `  { q } ) 
.(+)  U ) )
81 sseq1 3212 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( ( LSpan `  W ) `  {
q } )  -> 
( p  C_  T  <->  ( ( LSpan `  W ) `  { q } ) 
C_  T ) )
82 oveq1 5881 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  ( ( LSpan `  W ) `  {
q } )  -> 
( p  .(+)  U )  =  ( ( (
LSpan `  W ) `  { q } ) 
.(+)  U ) )
8382sseq2d 3219 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( ( LSpan `  W ) `  {
q } )  -> 
( ( ( LSpan `  W ) `  {
r } )  C_  ( p  .(+)  U )  <-> 
( ( LSpan `  W
) `  { r } )  C_  (
( ( LSpan `  W
) `  { q } )  .(+)  U ) ) )
8481, 83anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( ( LSpan `  W ) `  {
q } )  -> 
( ( p  C_  T  /\  ( ( LSpan `  W ) `  {
r } )  C_  ( p  .(+)  U ) )  <->  ( ( (
LSpan `  W ) `  { q } ) 
C_  T  /\  (
( LSpan `  W ) `  { r } ) 
C_  ( ( (
LSpan `  W ) `  { q } ) 
.(+)  U ) ) ) )
8584rspcev 2897 . . . . . . . . . . . . . . 15  |-  ( ( ( ( LSpan `  W
) `  { q } )  e.  A  /\  ( ( ( LSpan `  W ) `  {
q } )  C_  T  /\  ( ( LSpan `  W ) `  {
r } )  C_  ( ( ( LSpan `  W ) `  {
q } )  .(+)  U ) ) )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
8654, 55, 80, 85syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  ( y  =  .0. 
/\  q  e.  T  /\  q  =/=  .0.  ) )  ->  E. p  e.  A  ( p  C_  T  /\  ( (
LSpan `  W ) `  { r } ) 
C_  ( p  .(+)  U ) ) )
87863exp2 1169 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( y  =  .0.  ->  ( q  e.  T  ->  ( q  =/=  .0.  ->  E. p  e.  A  ( p  C_  T  /\  ( (
LSpan `  W ) `  { r } ) 
C_  ( p  .(+)  U ) ) ) ) ) )
8887imp 418 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =  .0.  )  ->  ( q  e.  T  ->  ( q  =/=  .0.  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) ) )
8988rexlimdv 2679 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =  .0.  )  ->  ( E. q  e.  T  q  =/=  .0.  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) )
9042, 89mpd 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =  .0.  )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
9144adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  ->  W  e.  LMod )
92 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  y  e.  T
)
933, 14lssel 15711 . . . . . . . . . . . . . 14  |-  ( ( T  e.  S  /\  y  e.  T )  ->  y  e.  ( Base `  W ) )
9447, 92, 93syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  y  e.  (
Base `  W )
)
9594adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  -> 
y  e.  ( Base `  W ) )
96 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  -> 
y  =/=  .0.  )
973, 4, 5, 6lsatlspsn2 29804 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  .0.  )  ->  ( (
LSpan `  W ) `  { y } )  e.  A )
9891, 95, 96, 97syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  -> 
( ( LSpan `  W
) `  { y } )  e.  A
)
9914, 4, 44, 47, 92lspsnel5a 15769 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
y } )  C_  T )
10099adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  -> 
( ( LSpan `  W
) `  { y } )  C_  T
)
101 simp3 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  r  =  ( y ( +g  `  W
) z ) )
102101sneqd 3666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  { r }  =  { ( y ( +g  `  W
) z ) } )
103102fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
r } )  =  ( ( LSpan `  W
) `  { (
y ( +g  `  W
) z ) } ) )
1043, 32, 4lspvadd 15865 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
)  ->  ( ( LSpan `  W ) `  { ( y ( +g  `  W ) z ) } ) 
C_  ( ( LSpan `  W ) `  {
y ,  z } ) )
10544, 94, 63, 104syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
( y ( +g  `  W ) z ) } )  C_  (
( LSpan `  W ) `  { y ,  z } ) )
106103, 105eqsstrd 3225 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
r } )  C_  ( ( LSpan `  W
) `  { y ,  z } ) )
1073, 4, 18, 44, 94, 63lsmpr 15858 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
y ,  z } )  =  ( ( ( LSpan `  W ) `  { y } ) 
.(+)  ( ( LSpan `  W ) `  {
z } ) ) )
108106, 107sseqtrd 3227 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
r } )  C_  ( ( ( LSpan `  W ) `  {
y } )  .(+)  ( ( LSpan `  W ) `  { z } ) ) )
10944, 26syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  S  C_  (SubGrp `  W ) )
1103, 14, 4lspsncl 15750 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  (
( LSpan `  W ) `  { y } )  e.  S )
11144, 94, 110syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
y } )  e.  S )
112109, 111sseldd 3194 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
y } )  e.  (SubGrp `  W )
)
113109, 60sseldd 3194 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  U  e.  (SubGrp `  W ) )
11418lsmless2 14987 . . . . . . . . . . . . . 14  |-  ( ( ( ( LSpan `  W
) `  { y } )  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )  /\  ( ( LSpan `  W
) `  { z } )  C_  U
)  ->  ( (
( LSpan `  W ) `  { y } ) 
.(+)  ( ( LSpan `  W ) `  {
z } ) ) 
C_  ( ( (
LSpan `  W ) `  { y } ) 
.(+)  U ) )
115112, 113, 70, 114syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( (
LSpan `  W ) `  { y } ) 
.(+)  ( ( LSpan `  W ) `  {
z } ) ) 
C_  ( ( (
LSpan `  W ) `  { y } ) 
.(+)  U ) )
116108, 115sstrd 3202 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  ( ( LSpan `  W ) `  {
r } )  C_  ( ( ( LSpan `  W ) `  {
y } )  .(+)  U ) )
117116adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  -> 
( ( LSpan `  W
) `  { r } )  C_  (
( ( LSpan `  W
) `  { y } )  .(+)  U ) )
118 sseq1 3212 . . . . . . . . . . . . 13  |-  ( p  =  ( ( LSpan `  W ) `  {
y } )  -> 
( p  C_  T  <->  ( ( LSpan `  W ) `  { y } ) 
C_  T ) )
119 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( p  =  ( ( LSpan `  W ) `  {
y } )  -> 
( p  .(+)  U )  =  ( ( (
LSpan `  W ) `  { y } ) 
.(+)  U ) )
120119sseq2d 3219 . . . . . . . . . . . . 13  |-  ( p  =  ( ( LSpan `  W ) `  {
y } )  -> 
( ( ( LSpan `  W ) `  {
r } )  C_  ( p  .(+)  U )  <-> 
( ( LSpan `  W
) `  { r } )  C_  (
( ( LSpan `  W
) `  { y } )  .(+)  U ) ) )
121118, 120anbi12d 691 . . . . . . . . . . . 12  |-  ( p  =  ( ( LSpan `  W ) `  {
y } )  -> 
( ( p  C_  T  /\  ( ( LSpan `  W ) `  {
r } )  C_  ( p  .(+)  U ) )  <->  ( ( (
LSpan `  W ) `  { y } ) 
C_  T  /\  (
( LSpan `  W ) `  { r } ) 
C_  ( ( (
LSpan `  W ) `  { y } ) 
.(+)  U ) ) ) )
122121rspcev 2897 . . . . . . . . . . 11  |-  ( ( ( ( LSpan `  W
) `  { y } )  e.  A  /\  ( ( ( LSpan `  W ) `  {
y } )  C_  T  /\  ( ( LSpan `  W ) `  {
r } )  C_  ( ( ( LSpan `  W ) `  {
y } )  .(+)  U ) ) )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
12398, 100, 117, 122syl12anc 1180 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( ( Base `  W )  \  {  .0.  } ) )  /\  ( y  e.  T  /\  z  e.  U )  /\  r  =  ( y ( +g  `  W ) z ) )  /\  y  =/=  .0.  )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
12490, 123pm2.61dane 2537 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  (
y  e.  T  /\  z  e.  U )  /\  r  =  (
y ( +g  `  W
) z ) )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
1251243exp 1150 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  (
( y  e.  T  /\  z  e.  U
)  ->  ( r  =  ( y ( +g  `  W ) z )  ->  E. p  e.  A  ( p  C_  T  /\  ( (
LSpan `  W ) `  { r } ) 
C_  ( p  .(+)  U ) ) ) ) )
126125rexlimdvv 2686 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  ( E. y  e.  T  E. z  e.  U  r  =  ( y
( +g  `  W ) z )  ->  E. p  e.  A  ( p  C_  T  /\  ( (
LSpan `  W ) `  { r } ) 
C_  ( p  .(+)  U ) ) ) )
1271263adant3 975 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( E. y  e.  T  E. z  e.  U  r  =  ( y ( +g  `  W
) z )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) )
12835, 127mpd 14 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) )
129 sseq1 3212 . . . . . . . 8  |-  ( Q  =  ( ( LSpan `  W ) `  {
r } )  -> 
( Q  C_  (
p  .(+)  U )  <->  ( ( LSpan `  W ) `  { r } ) 
C_  ( p  .(+)  U ) ) )
130129anbi2d 684 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
r } )  -> 
( ( p  C_  T  /\  Q  C_  (
p  .(+)  U ) )  <-> 
( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) )
131130rexbidv 2577 . . . . . 6  |-  ( Q  =  ( ( LSpan `  W ) `  {
r } )  -> 
( E. p  e.  A  ( p  C_  T  /\  Q  C_  (
p  .(+)  U ) )  <->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) )
1321313ad2ant3 978 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  -> 
( E. p  e.  A  ( p  C_  T  /\  Q  C_  (
p  .(+)  U ) )  <->  E. p  e.  A  ( p  C_  T  /\  ( ( LSpan `  W
) `  { r } )  C_  (
p  .(+)  U ) ) ) )
133128, 132mpbird 223 . . . 4  |-  ( (
ph  /\  r  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  Q  =  ( ( LSpan `  W
) `  { r } ) )  ->  E. p  e.  A  ( p  C_  T  /\  Q  C_  ( p  .(+)  U ) ) )
1341333exp 1150 . . 3  |-  ( ph  ->  ( r  e.  ( ( Base `  W
)  \  {  .0.  } )  ->  ( Q  =  ( ( LSpan `  W ) `  {
r } )  ->  E. p  e.  A  ( p  C_  T  /\  Q  C_  ( p  .(+)  U ) ) ) ) )
135134rexlimdv 2679 . 2  |-  ( ph  ->  ( E. r  e.  ( ( Base `  W
)  \  {  .0.  } ) Q  =  ( ( LSpan `  W ) `  { r } )  ->  E. p  e.  A  ( p  C_  T  /\  Q  C_  ( p  .(+)  U ) ) ) )
1369, 135mpd 14 1  |-  ( ph  ->  E. p  e.  A  ( p  C_  T  /\  Q  C_  ( p  .(+)  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557    \ cdif 3162    C_ wss 3165   {csn 3653   {cpr 3654   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416  SubGrpcsubg 14631   LSSumclsm 14961   LModclmod 15643   LSubSpclss 15705   LSpanclspn 15744  LSAtomsclsa 29786
This theorem is referenced by:  dochexmidlem4  32275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lsatoms 29788
  Copyright terms: Public domain W3C validator