Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Unicode version

Theorem lsmsatcv 29808
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 23154 analog.) Explicit atom version of lsmcv 16213. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s  |-  S  =  ( LSubSp `  W )
lsmsatcv.p  |-  .(+)  =  (
LSSum `  W )
lsmsatcv.a  |-  A  =  (LSAtoms `  W )
lsmsatcv.w  |-  ( ph  ->  W  e.  LVec )
lsmsatcv.t  |-  ( ph  ->  T  e.  S )
lsmsatcv.u  |-  ( ph  ->  U  e.  S )
lsmsatcv.x  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
lsmsatcv  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
)

Proof of Theorem lsmsatcv
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 lsmsatcv.x . . . 4  |-  ( ph  ->  Q  e.  A )
3 eqid 2436 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2436 . . . . 5  |-  ( LSpan `  W )  =  (
LSpan `  W )
5 lsmsatcv.a . . . . 5  |-  A  =  (LSAtoms `  W )
63, 4, 5islsati 29792 . . . 4  |-  ( ( W  e.  LVec  /\  Q  e.  A )  ->  E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } ) )
71, 2, 6syl2anc 643 . . 3  |-  ( ph  ->  E. v  e.  (
Base `  W ) Q  =  ( ( LSpan `  W ) `  { v } ) )
8 lsmsatcv.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
9 lsmsatcv.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  W )
101adantr 452 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  W  e.  LVec )
11 lsmsatcv.t . . . . . . . . 9  |-  ( ph  ->  T  e.  S )
1211adantr 452 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  T  e.  S )
13 lsmsatcv.u . . . . . . . . 9  |-  ( ph  ->  U  e.  S )
1413adantr 452 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  U  e.  S )
15 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  v  e.  ( Base `  W )
)
163, 8, 4, 9, 10, 12, 14, 15lsmcv 16213 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  ( Base `  W
) )  /\  T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
17163expib 1156 . . . . . 6  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
18173adant3 977 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
19 oveq2 6089 . . . . . . . . 9  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( T  .(+)  Q )  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) )
2019sseq2d 3376 . . . . . . . 8  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  C_  ( T  .(+)  Q )  <->  U  C_  ( T  .(+)  ( ( LSpan `  W ) `  {
v } ) ) ) )
2120anbi2d 685 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  <-> 
( T  C.  U  /\  U  C_  ( T 
.(+)  ( ( LSpan `  W ) `  {
v } ) ) ) ) )
2219eqeq2d 2447 . . . . . . 7  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( U  =  ( T  .(+)  Q )  <->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) )
2321, 22imbi12d 312 . . . . . 6  |-  ( Q  =  ( ( LSpan `  W ) `  {
v } )  -> 
( ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) )  <->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
24233ad2ant3 980 . . . . 5  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( (
( T  C.  U  /\  U  C_  ( T 
.(+)  Q ) )  ->  U  =  ( T  .(+) 
Q ) )  <->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T  .(+)  ( ( LSpan `  W ) `  { v } ) ) ) ) )
2518, 24mpbird 224 . . . 4  |-  ( (
ph  /\  v  e.  ( Base `  W )  /\  Q  =  (
( LSpan `  W ) `  { v } ) )  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) )
2625rexlimdv3a 2832 . . 3  |-  ( ph  ->  ( E. v  e.  ( Base `  W
) Q  =  ( ( LSpan `  W ) `  { v } )  ->  ( ( T 
C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q ) ) ) )
277, 26mpd 15 . 2  |-  ( ph  ->  ( ( T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
) )
28273impib 1151 1  |-  ( (
ph  /\  T  C.  U  /\  U  C_  ( T  .(+)  Q ) )  ->  U  =  ( T  .(+)  Q )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2706    C_ wss 3320    C. wpss 3321   {csn 3814   ` cfv 5454  (class class class)co 6081   Basecbs 13469   LSSumclsm 15268   LSubSpclss 16008   LSpanclspn 16047   LVecclvec 16174  LSAtomsclsa 29772
This theorem is referenced by:  dochsat  32181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-0g 13727  df-mnd 14690  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-subg 14941  df-lsm 15270  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-drng 15837  df-lmod 15952  df-lss 16009  df-lsp 16048  df-lvec 16175  df-lsatoms 29774
  Copyright terms: Public domain W3C validator