MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Unicode version

Theorem lsmsubm 15174
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p  |-  .(+)  =  (
LSSum `  G )
lsmsubg.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
lsmsubm  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )

Proof of Theorem lsmsubm
Dummy variables  a 
b  c  d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 14634 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
213ad2ant1 977 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  G  e.  Mnd )
3 eqid 2366 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
43submss 14637 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  T  C_  ( Base `  G ) )
543ad2ant1 977 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( Base `  G ) )
63submss 14637 . . . 4  |-  ( U  e.  (SubMnd `  G
)  ->  U  C_  ( Base `  G ) )
763ad2ant2 978 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  C_  ( Base `  G ) )
8 lsmsubg.p . . . 4  |-  .(+)  =  (
LSSum `  G )
93, 8lsmssv 15164 . . 3  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
102, 5, 7, 9syl3anc 1183 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
11 simp2 957 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubMnd `  G ) )
123, 8lsmub1x 15167 . . . 4  |-  ( ( T  C_  ( Base `  G )  /\  U  e.  (SubMnd `  G )
)  ->  T  C_  ( T  .(+)  U ) )
135, 11, 12syl2anc 642 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( T  .(+)  U ) )
14 eqid 2366 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1514subm0cl 14639 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  T
)
16153ad2ant1 977 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  T
)
1713, 16sseldd 3267 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  ( T  .(+)  U )
)
18 eqid 2366 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
193, 18, 8lsmelvalx 15161 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
202, 5, 7, 19syl3anc 1183 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
213, 18, 8lsmelvalx 15161 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
222, 5, 7, 21syl3anc 1183 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
2320, 22anbi12d 691 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) ) ) )
24 reeanv 2792 . . . . 5  |-  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a
( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
25 reeanv 2792 . . . . . . 7  |-  ( E. c  e.  U  E. d  e.  U  (
x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  <->  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
262adantr 451 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  G  e.  Mnd )
275adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Base `  G
) )
28 simprll 738 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  T )
2927, 28sseldd 3267 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  ( Base `  G
) )
30 simprlr 739 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  T )
3127, 30sseldd 3267 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Base `  G
) )
327adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  C_  ( Base `  G
) )
33 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  U )
3432, 33sseldd 3267 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  ( Base `  G
) )
35 simprrr 741 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  U )
3632, 35sseldd 3267 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  ( Base `  G
) )
37 simpl3 961 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Z `  U
) )
3837, 30sseldd 3267 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Z `  U
) )
39 lsmsubg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
4018, 39cntzi 15015 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Z `
 U )  /\  c  e.  U )  ->  ( b ( +g  `  G ) c )  =  ( c ( +g  `  G ) b ) )
4138, 33, 40syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
b ( +g  `  G
) c )  =  ( c ( +g  `  G ) b ) )
423, 18, 26, 29, 31, 34, 36, 41mnd4g 14588 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  =  ( ( a ( +g  `  G ) c ) ( +g  `  G ) ( b ( +g  `  G
) d ) ) )
43 simpl1 959 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  e.  (SubMnd `  G )
)
4418submcl 14640 . . . . . . . . . . . . 13  |-  ( ( T  e.  (SubMnd `  G )  /\  a  e.  T  /\  b  e.  T )  ->  (
a ( +g  `  G
) b )  e.  T )
4543, 28, 30, 44syl3anc 1183 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
a ( +g  `  G
) b )  e.  T )
46 simpl2 960 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  e.  (SubMnd `  G )
)
4718submcl 14640 . . . . . . . . . . . . 13  |-  ( ( U  e.  (SubMnd `  G )  /\  c  e.  U  /\  d  e.  U )  ->  (
c ( +g  `  G
) d )  e.  U )
4846, 33, 35, 47syl3anc 1183 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
c ( +g  `  G
) d )  e.  U )
493, 18, 8lsmelvalix 15162 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  (
( a ( +g  `  G ) b )  e.  T  /\  (
c ( +g  `  G
) d )  e.  U ) )  -> 
( ( a ( +g  `  G ) b ) ( +g  `  G ) ( c ( +g  `  G
) d ) )  e.  ( T  .(+)  U ) )
5026, 27, 32, 45, 48, 49syl32anc 1191 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
5142, 50eqeltrrd 2441 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
52 oveq12 5990 . . . . . . . . . . 11  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  =  ( ( a ( +g  `  G
) c ) ( +g  `  G ) ( b ( +g  `  G ) d ) ) )
5352eleq1d 2432 . . . . . . . . . 10  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )  <->  ( ( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) ) )
5451, 53syl5ibrcom 213 . . . . . . . . 9  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5554anassrs 629 . . . . . . . 8  |-  ( ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `  U
) )  /\  (
a  e.  T  /\  b  e.  T )
)  /\  ( c  e.  U  /\  d  e.  U ) )  -> 
( ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5655rexlimdvva 2759 . . . . . . 7  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( E. c  e.  U  E. d  e.  U  ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5725, 56syl5bir 209 . . . . . 6  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5857rexlimdvva 2759 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5924, 58syl5bir 209 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
6023, 59sylbid 206 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  ( x
( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
6160ralrimivv 2719 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G
) y )  e.  ( T  .(+)  U ) )
623, 14, 18issubm 14635 . . 3  |-  ( G  e.  Mnd  ->  (
( T  .(+)  U )  e.  (SubMnd `  G
)  <->  ( ( T 
.(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G )  e.  ( T  .(+)  U )  /\  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U )
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
632, 62syl 15 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( T 
.(+)  U )  e.  (SubMnd `  G )  <->  ( ( T  .(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  ( T 
.(+)  U )  /\  A. x  e.  ( T  .(+) 
U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
6410, 17, 61, 63mpbir3and 1136 1  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629    C_ wss 3238   ` cfv 5358  (class class class)co 5981   Basecbs 13356   +g cplusg 13416   0gc0g 13610   Mndcmnd 14571  SubMndcsubmnd 14624  Cntzccntz 15001   LSSumclsm 15155
This theorem is referenced by:  lsmsubg  15175
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-0g 13614  df-mnd 14577  df-submnd 14626  df-cntz 15003  df-lsm 15157
  Copyright terms: Public domain W3C validator