MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Unicode version

Theorem lsmsubm 15279
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p  |-  .(+)  =  (
LSSum `  G )
lsmsubg.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
lsmsubm  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )

Proof of Theorem lsmsubm
Dummy variables  a 
b  c  d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 14739 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
213ad2ant1 978 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  G  e.  Mnd )
3 eqid 2435 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
43submss 14742 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  T  C_  ( Base `  G ) )
543ad2ant1 978 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( Base `  G ) )
63submss 14742 . . . 4  |-  ( U  e.  (SubMnd `  G
)  ->  U  C_  ( Base `  G ) )
763ad2ant2 979 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  C_  ( Base `  G ) )
8 lsmsubg.p . . . 4  |-  .(+)  =  (
LSSum `  G )
93, 8lsmssv 15269 . . 3  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
102, 5, 7, 9syl3anc 1184 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
11 simp2 958 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubMnd `  G ) )
123, 8lsmub1x 15272 . . . 4  |-  ( ( T  C_  ( Base `  G )  /\  U  e.  (SubMnd `  G )
)  ->  T  C_  ( T  .(+)  U ) )
135, 11, 12syl2anc 643 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( T  .(+)  U ) )
14 eqid 2435 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1514subm0cl 14744 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  T
)
16153ad2ant1 978 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  T
)
1713, 16sseldd 3341 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  ( T  .(+)  U )
)
18 eqid 2435 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
193, 18, 8lsmelvalx 15266 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
202, 5, 7, 19syl3anc 1184 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
213, 18, 8lsmelvalx 15266 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
222, 5, 7, 21syl3anc 1184 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
2320, 22anbi12d 692 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) ) ) )
24 reeanv 2867 . . . . 5  |-  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a
( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
25 reeanv 2867 . . . . . . 7  |-  ( E. c  e.  U  E. d  e.  U  (
x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  <->  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
262adantr 452 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  G  e.  Mnd )
275adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Base `  G
) )
28 simprll 739 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  T )
2927, 28sseldd 3341 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  ( Base `  G
) )
30 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  T )
3127, 30sseldd 3341 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Base `  G
) )
327adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  C_  ( Base `  G
) )
33 simprrl 741 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  U )
3432, 33sseldd 3341 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  ( Base `  G
) )
35 simprrr 742 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  U )
3632, 35sseldd 3341 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  ( Base `  G
) )
37 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Z `  U
) )
3837, 30sseldd 3341 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Z `  U
) )
39 lsmsubg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
4018, 39cntzi 15120 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Z `
 U )  /\  c  e.  U )  ->  ( b ( +g  `  G ) c )  =  ( c ( +g  `  G ) b ) )
4138, 33, 40syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
b ( +g  `  G
) c )  =  ( c ( +g  `  G ) b ) )
423, 18, 26, 29, 31, 34, 36, 41mnd4g 14693 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  =  ( ( a ( +g  `  G ) c ) ( +g  `  G ) ( b ( +g  `  G
) d ) ) )
43 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  e.  (SubMnd `  G )
)
4418submcl 14745 . . . . . . . . . . . . 13  |-  ( ( T  e.  (SubMnd `  G )  /\  a  e.  T  /\  b  e.  T )  ->  (
a ( +g  `  G
) b )  e.  T )
4543, 28, 30, 44syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
a ( +g  `  G
) b )  e.  T )
46 simpl2 961 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  e.  (SubMnd `  G )
)
4718submcl 14745 . . . . . . . . . . . . 13  |-  ( ( U  e.  (SubMnd `  G )  /\  c  e.  U  /\  d  e.  U )  ->  (
c ( +g  `  G
) d )  e.  U )
4846, 33, 35, 47syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
c ( +g  `  G
) d )  e.  U )
493, 18, 8lsmelvalix 15267 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  (
( a ( +g  `  G ) b )  e.  T  /\  (
c ( +g  `  G
) d )  e.  U ) )  -> 
( ( a ( +g  `  G ) b ) ( +g  `  G ) ( c ( +g  `  G
) d ) )  e.  ( T  .(+)  U ) )
5026, 27, 32, 45, 48, 49syl32anc 1192 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
5142, 50eqeltrrd 2510 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
52 oveq12 6082 . . . . . . . . . . 11  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  =  ( ( a ( +g  `  G
) c ) ( +g  `  G ) ( b ( +g  `  G ) d ) ) )
5352eleq1d 2501 . . . . . . . . . 10  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )  <->  ( ( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) ) )
5451, 53syl5ibrcom 214 . . . . . . . . 9  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5554anassrs 630 . . . . . . . 8  |-  ( ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `  U
) )  /\  (
a  e.  T  /\  b  e.  T )
)  /\  ( c  e.  U  /\  d  e.  U ) )  -> 
( ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5655rexlimdvva 2829 . . . . . . 7  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( E. c  e.  U  E. d  e.  U  ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5725, 56syl5bir 210 . . . . . 6  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5857rexlimdvva 2829 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5924, 58syl5bir 210 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
6023, 59sylbid 207 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  ( x
( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
6160ralrimivv 2789 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G
) y )  e.  ( T  .(+)  U ) )
623, 14, 18issubm 14740 . . 3  |-  ( G  e.  Mnd  ->  (
( T  .(+)  U )  e.  (SubMnd `  G
)  <->  ( ( T 
.(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G )  e.  ( T  .(+)  U )  /\  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U )
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
632, 62syl 16 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( T 
.(+)  U )  e.  (SubMnd `  G )  <->  ( ( T  .(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  ( T 
.(+)  U )  /\  A. x  e.  ( T  .(+) 
U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
6410, 17, 61, 63mpbir3and 1137 1  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   0gc0g 13715   Mndcmnd 14676  SubMndcsubmnd 14729  Cntzccntz 15106   LSSumclsm 15260
This theorem is referenced by:  lsmsubg  15280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-mnd 14682  df-submnd 14731  df-cntz 15108  df-lsm 15262
  Copyright terms: Public domain W3C validator