MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmunss Structured version   Unicode version

Theorem lsmunss 15285
Description: Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmub1.p  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmunss  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( T  u.  U )  C_  ( T  .(+)  U ) )

Proof of Theorem lsmunss
StepHypRef Expression
1 lsmub1.p . . 3  |-  .(+)  =  (
LSSum `  G )
21lsmub1 15283 . 2  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  T  C_  ( T  .(+)  U ) )
31lsmub2 15284 . 2  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  U  C_  ( T  .(+)  U ) )
42, 3unssd 3516 1  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( T  u.  U )  C_  ( T  .(+)  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    u. cun 3311    C_ wss 3313   ` cfv 5447  (class class class)co 6074  SubGrpcsubg 14931   LSSumclsm 15261
This theorem is referenced by:  dprd2da  15593  dmdprdsplit2lem  15596  lsmsp  16151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-0g 13720  df-mnd 14683  df-submnd 14732  df-grp 14805  df-minusg 14806  df-subg 14934  df-lsm 15263
  Copyright terms: Public domain W3C validator