MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspextmo Unicode version

Theorem lspextmo 15829
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
lspextmo.b  |-  B  =  ( Base `  S
)
lspextmo.k  |-  K  =  ( LSpan `  S )
Assertion
Ref Expression
lspextmo  |-  ( ( X  C_  B  /\  ( K `  X )  =  B )  ->  E* g  e.  ( S LMHom  T ) ( g  |`  X )  =  F )
Distinct variable groups:    B, g    g, F    g, K    S, g    T, g    g, X

Proof of Theorem lspextmo
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2315 . . . 4  |-  ( ( ( g  |`  X )  =  F  /\  (
h  |`  X )  =  F )  ->  (
g  |`  X )  =  ( h  |`  X ) )
2 inss1 3402 . . . . . . . . 9  |-  ( g  i^i  h )  C_  g
3 dmss 4894 . . . . . . . . 9  |-  ( ( g  i^i  h ) 
C_  g  ->  dom  ( g  i^i  h
)  C_  dom  g )
42, 3ax-mp 8 . . . . . . . 8  |-  dom  (
g  i^i  h )  C_ 
dom  g
5 lspextmo.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  S
)
6 eqid 2296 . . . . . . . . . . . . 13  |-  ( Base `  T )  =  (
Base `  T )
75, 6lmhmf 15807 . . . . . . . . . . . 12  |-  ( g  e.  ( S LMHom  T
)  ->  g : B
--> ( Base `  T
) )
87ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  g : B
--> ( Base `  T
) )
9 ffn 5405 . . . . . . . . . . 11  |-  ( g : B --> ( Base `  T )  ->  g  Fn  B )
108, 9syl 15 . . . . . . . . . 10  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  g  Fn  B )
1110adantrr 697 . . . . . . . . 9  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  -> 
g  Fn  B )
12 fndm 5359 . . . . . . . . 9  |-  ( g  Fn  B  ->  dom  g  =  B )
1311, 12syl 15 . . . . . . . 8  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  dom  g  =  B
)
144, 13syl5sseq 3239 . . . . . . 7  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  dom  ( g  i^i  h
)  C_  B )
15 simplr 731 . . . . . . . 8  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  -> 
( K `  X
)  =  B )
16 lmhmlmod1 15806 . . . . . . . . . . 11  |-  ( g  e.  ( S LMHom  T
)  ->  S  e.  LMod )
1716adantr 451 . . . . . . . . . 10  |-  ( ( g  e.  ( S LMHom 
T )  /\  h  e.  ( S LMHom  T ) )  ->  S  e.  LMod )
1817ad2antrl 708 . . . . . . . . 9  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  S  e.  LMod )
19 eqid 2296 . . . . . . . . . . 11  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
2019lmhmeql 15828 . . . . . . . . . 10  |-  ( ( g  e.  ( S LMHom 
T )  /\  h  e.  ( S LMHom  T ) )  ->  dom  ( g  i^i  h )  e.  ( LSubSp `  S )
)
2120ad2antrl 708 . . . . . . . . 9  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  dom  ( g  i^i  h
)  e.  ( LSubSp `  S ) )
22 simprr 733 . . . . . . . . 9  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  X  C_  dom  ( g  i^i  h ) )
23 lspextmo.k . . . . . . . . . 10  |-  K  =  ( LSpan `  S )
2419, 23lspssp 15761 . . . . . . . . 9  |-  ( ( S  e.  LMod  /\  dom  ( g  i^i  h
)  e.  ( LSubSp `  S )  /\  X  C_ 
dom  ( g  i^i  h ) )  -> 
( K `  X
)  C_  dom  ( g  i^i  h ) )
2518, 21, 22, 24syl3anc 1182 . . . . . . . 8  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  -> 
( K `  X
)  C_  dom  ( g  i^i  h ) )
2615, 25eqsstr3d 3226 . . . . . . 7  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  B  C_  dom  ( g  i^i  h ) )
2714, 26eqssd 3209 . . . . . 6  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( ( g  e.  ( S LMHom  T
)  /\  h  e.  ( S LMHom  T ) )  /\  X  C_  dom  ( g  i^i  h
) ) )  ->  dom  ( g  i^i  h
)  =  B )
2827expr 598 . . . . 5  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  ( X  C_ 
dom  ( g  i^i  h )  ->  dom  ( g  i^i  h
)  =  B ) )
29 simprr 733 . . . . . . 7  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  h  e.  ( S LMHom  T ) )
305, 6lmhmf 15807 . . . . . . 7  |-  ( h  e.  ( S LMHom  T
)  ->  h : B
--> ( Base `  T
) )
31 ffn 5405 . . . . . . 7  |-  ( h : B --> ( Base `  T )  ->  h  Fn  B )
3229, 30, 313syl 18 . . . . . 6  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  h  Fn  B )
33 simpll 730 . . . . . 6  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  X  C_  B
)
34 fnreseql 5651 . . . . . 6  |-  ( ( g  Fn  B  /\  h  Fn  B  /\  X  C_  B )  -> 
( ( g  |`  X )  =  ( h  |`  X )  <->  X 
C_  dom  ( g  i^i  h ) ) )
3510, 32, 33, 34syl3anc 1182 . . . . 5  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  ( (
g  |`  X )  =  ( h  |`  X )  <-> 
X  C_  dom  ( g  i^i  h ) ) )
36 fneqeql 5649 . . . . . 6  |-  ( ( g  Fn  B  /\  h  Fn  B )  ->  ( g  =  h  <->  dom  ( g  i^i  h
)  =  B ) )
3710, 32, 36syl2anc 642 . . . . 5  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  ( g  =  h  <->  dom  ( g  i^i  h )  =  B ) )
3828, 35, 373imtr4d 259 . . . 4  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  ( (
g  |`  X )  =  ( h  |`  X )  ->  g  =  h ) )
391, 38syl5 28 . . 3  |-  ( ( ( X  C_  B  /\  ( K `  X
)  =  B )  /\  ( g  e.  ( S LMHom  T )  /\  h  e.  ( S LMHom  T ) ) )  ->  ( (
( g  |`  X )  =  F  /\  (
h  |`  X )  =  F )  ->  g  =  h ) )
4039ralrimivva 2648 . 2  |-  ( ( X  C_  B  /\  ( K `  X )  =  B )  ->  A. g  e.  ( S LMHom  T ) A. h  e.  ( S LMHom  T ) ( ( ( g  |`  X )  =  F  /\  ( h  |`  X )  =  F )  ->  g  =  h ) )
41 reseq1 4965 . . . 4  |-  ( g  =  h  ->  (
g  |`  X )  =  ( h  |`  X ) )
4241eqeq1d 2304 . . 3  |-  ( g  =  h  ->  (
( g  |`  X )  =  F  <->  ( h  |`  X )  =  F ) )
4342rmo4 2971 . 2  |-  ( E* g  e.  ( S LMHom 
T ) ( g  |`  X )  =  F  <->  A. g  e.  ( S LMHom  T ) A. h  e.  ( S LMHom  T ) ( ( ( g  |`  X )  =  F  /\  ( h  |`  X )  =  F )  ->  g  =  h ) )
4440, 43sylibr 203 1  |-  ( ( X  C_  B  /\  ( K `  X )  =  B )  ->  E* g  e.  ( S LMHom  T ) ( g  |`  X )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E*wrmo 2559    i^i cin 3164    C_ wss 3165   dom cdm 4705    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   LModclmod 15643   LSubSpclss 15705   LSpanclspn 15744   LMHom clmhm 15792
This theorem is referenced by:  frlmup4  27356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-ghm 14697  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lmhm 15795
  Copyright terms: Public domain W3C validator