MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspf Structured version   Unicode version

Theorem lspf 16055
Description: The span operator on a left module maps subsets to subsets. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspf  |-  ( W  e.  LMod  ->  N : ~P V --> S )

Proof of Theorem lspf
Dummy variables  s  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 445 . . . 4  |-  ( ( W  e.  LMod  /\  s  e.  ~P V )  ->  W  e.  LMod )
2 ssrab2 3430 . . . . 5  |-  { p  e.  S  |  s  C_  p }  C_  S
32a1i 11 . . . 4  |-  ( ( W  e.  LMod  /\  s  e.  ~P V )  ->  { p  e.  S  |  s  C_  p }  C_  S )
4 lspval.v . . . . . . 7  |-  V  =  ( Base `  W
)
5 lspval.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
64, 5lss1 16020 . . . . . 6  |-  ( W  e.  LMod  ->  V  e.  S )
7 elpwi 3809 . . . . . 6  |-  ( s  e.  ~P V  -> 
s  C_  V )
8 sseq2 3372 . . . . . . 7  |-  ( p  =  V  ->  (
s  C_  p  <->  s  C_  V ) )
98rspcev 3054 . . . . . 6  |-  ( ( V  e.  S  /\  s  C_  V )  ->  E. p  e.  S  s  C_  p )
106, 7, 9syl2an 465 . . . . 5  |-  ( ( W  e.  LMod  /\  s  e.  ~P V )  ->  E. p  e.  S  s  C_  p )
11 rabn0 3649 . . . . 5  |-  ( { p  e.  S  | 
s  C_  p }  =/=  (/)  <->  E. p  e.  S  s  C_  p )
1210, 11sylibr 205 . . . 4  |-  ( ( W  e.  LMod  /\  s  e.  ~P V )  ->  { p  e.  S  |  s  C_  p }  =/=  (/) )
135lssintcl 16045 . . . 4  |-  ( ( W  e.  LMod  /\  {
p  e.  S  | 
s  C_  p }  C_  S  /\  { p  e.  S  |  s  C_  p }  =/=  (/) )  ->  |^| { p  e.  S  |  s  C_  p }  e.  S )
141, 3, 12, 13syl3anc 1185 . . 3  |-  ( ( W  e.  LMod  /\  s  e.  ~P V )  ->  |^| { p  e.  S  |  s  C_  p }  e.  S )
15 eqid 2438 . . 3  |-  ( s  e.  ~P V  |->  |^|
{ p  e.  S  |  s  C_  p }
)  =  ( s  e.  ~P V  |->  |^|
{ p  e.  S  |  s  C_  p }
)
1614, 15fmptd 5896 . 2  |-  ( W  e.  LMod  ->  ( s  e.  ~P V  |->  |^|
{ p  e.  S  |  s  C_  p }
) : ~P V --> S )
17 lspval.n . . . 4  |-  N  =  ( LSpan `  W )
184, 5, 17lspfval 16054 . . 3  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { p  e.  S  |  s  C_  p } ) )
1918feq1d 5583 . 2  |-  ( W  e.  LMod  ->  ( N : ~P V --> S  <->  ( s  e.  ~P V  |->  |^| { p  e.  S  |  s  C_  p } ) : ~P V --> S ) )
2016, 19mpbird 225 1  |-  ( W  e.  LMod  ->  N : ~P V --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   |^|cint 4052    e. cmpt 4269   -->wf 5453   ` cfv 5457   Basecbs 13474   LModclmod 15955   LSubSpclss 16013   LSpanclspn 16052
This theorem is referenced by:  lspcl  16057  islmodfg  27158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-plusg 13547  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mgp 15654  df-rng 15668  df-ur 15670  df-lmod 15957  df-lss 16014  df-lsp 16053
  Copyright terms: Public domain W3C validator