MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Unicode version

Theorem lspfval 15730
Description: The span function for a left vector space (or a left module). (df-span 21888 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 elex 2796 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 fveq2 5525 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . . 7  |-  V  =  ( Base `  W
)
53, 4syl6eqr 2333 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3630 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5525 . . . . . . . 8  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
97, 8syl6eqr 2333 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
10 rabeq 2782 . . . . . . 7  |-  ( (
LSubSp `  w )  =  S  ->  { t  e.  ( LSubSp `  w )  |  s  C_  t }  =  { t  e.  S  |  s  C_  t } )
119, 10syl 15 . . . . . 6  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1211inteqd 3867 . . . . 5  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
136, 12mpteq12dv 4098 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
14 df-lsp 15729 . . . 4  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
15 fvex 5539 . . . . . . 7  |-  ( Base `  W )  e.  _V
164, 15eqeltri 2353 . . . . . 6  |-  V  e. 
_V
1716pwex 4193 . . . . 5  |-  ~P V  e.  _V
1817mptex 5746 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  e.  _V
1913, 14, 18fvmpt 5602 . . 3  |-  ( W  e.  _V  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
202, 19syl 15 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
211, 20syl5eq 2327 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   |^|cint 3862    e. cmpt 4077   ` cfv 5255   Basecbs 13148   LSubSpclss 15689   LSpanclspn 15728
This theorem is referenced by:  lspf  15731  lspval  15732  00lsp  15738  mrclsp  15746  lsppropd  15775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-lsp 15729
  Copyright terms: Public domain W3C validator