MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Unicode version

Theorem lspfval 16012
Description: The span function for a left vector space (or a left module). (df-span 22772 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 elex 2932 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 fveq2 5695 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . . 7  |-  V  =  ( Base `  W
)
53, 4syl6eqr 2462 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3772 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5695 . . . . . . . 8  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
97, 8syl6eqr 2462 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
10 rabeq 2918 . . . . . . 7  |-  ( (
LSubSp `  w )  =  S  ->  { t  e.  ( LSubSp `  w )  |  s  C_  t }  =  { t  e.  S  |  s  C_  t } )
119, 10syl 16 . . . . . 6  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1211inteqd 4023 . . . . 5  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
136, 12mpteq12dv 4255 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
14 df-lsp 16011 . . . 4  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
15 fvex 5709 . . . . . . 7  |-  ( Base `  W )  e.  _V
164, 15eqeltri 2482 . . . . . 6  |-  V  e. 
_V
1716pwex 4350 . . . . 5  |-  ~P V  e.  _V
1817mptex 5933 . . . 4  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  e.  _V
1913, 14, 18fvmpt 5773 . . 3  |-  ( W  e.  _V  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
202, 19syl 16 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
211, 20syl5eq 2456 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   {crab 2678   _Vcvv 2924    C_ wss 3288   ~Pcpw 3767   |^|cint 4018    e. cmpt 4234   ` cfv 5421   Basecbs 13432   LSubSpclss 15971   LSpanclspn 16010
This theorem is referenced by:  lspf  16013  lspval  16014  00lsp  16020  mrclsp  16028  lsppropd  16057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-lsp 16011
  Copyright terms: Public domain W3C validator