MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Unicode version

Theorem lspprat 16184
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if  z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
Assertion
Ref Expression
lspprat  |-  ( ph  ->  E. z  e.  V  U  =  ( N `  { z } ) )
Distinct variable groups:    z, N    z, U    z, V    z, W    ph, z
Allowed substitution hints:    S( z)    X( z)    Y( z)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 3650 . . 3  |-  ( U 
C_  { ( 0g
`  W ) }  <-> 
( U  \  {
( 0g `  W
) } )  =  (/) )
2 lspprat.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 16137 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
5 lspprat.v . . . . . . . 8  |-  V  =  ( Base `  W
)
6 eqid 2408 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
75, 6lmod0vcl 15938 . . . . . . 7  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
84, 7syl 16 . . . . . 6  |-  ( ph  ->  ( 0g `  W
)  e.  V )
98adantr 452 . . . . 5  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  ( 0g `  W )  e.  V )
10 simpr 448 . . . . . . 7  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  C_ 
{ ( 0g `  W ) } )
11 lspprat.u . . . . . . . . 9  |-  ( ph  ->  U  e.  S )
12 lspprat.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  W )
136, 12lss0ss 15984 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  { ( 0g `  W ) }  C_  U )
144, 11, 13syl2anc 643 . . . . . . . 8  |-  ( ph  ->  { ( 0g `  W ) }  C_  U )
1514adantr 452 . . . . . . 7  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  { ( 0g `  W ) }  C_  U )
1610, 15eqssd 3329 . . . . . 6  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  =  { ( 0g `  W ) } )
17 lspprat.n . . . . . . . . 9  |-  N  =  ( LSpan `  W )
186, 17lspsn0 16043 . . . . . . . 8  |-  ( W  e.  LMod  ->  ( N `
 { ( 0g
`  W ) } )  =  { ( 0g `  W ) } )
194, 18syl 16 . . . . . . 7  |-  ( ph  ->  ( N `  {
( 0g `  W
) } )  =  { ( 0g `  W ) } )
2019adantr 452 . . . . . 6  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  ( N `  { ( 0g `  W ) } )  =  { ( 0g `  W ) } )
2116, 20eqtr4d 2443 . . . . 5  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  =  ( N `  { ( 0g `  W ) } ) )
22 sneq 3789 . . . . . . . 8  |-  ( z  =  ( 0g `  W )  ->  { z }  =  { ( 0g `  W ) } )
2322fveq2d 5695 . . . . . . 7  |-  ( z  =  ( 0g `  W )  ->  ( N `  { z } )  =  ( N `  { ( 0g `  W ) } ) )
2423eqeq2d 2419 . . . . . 6  |-  ( z  =  ( 0g `  W )  ->  ( U  =  ( N `  { z } )  <-> 
U  =  ( N `
 { ( 0g
`  W ) } ) ) )
2524rspcev 3016 . . . . 5  |-  ( ( ( 0g `  W
)  e.  V  /\  U  =  ( N `  { ( 0g `  W ) } ) )  ->  E. z  e.  V  U  =  ( N `  { z } ) )
269, 21, 25syl2anc 643 . . . 4  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  E. z  e.  V  U  =  ( N `  { z } ) )
2726ex 424 . . 3  |-  ( ph  ->  ( U  C_  { ( 0g `  W ) }  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
281, 27syl5bir 210 . 2  |-  ( ph  ->  ( ( U  \  { ( 0g `  W ) } )  =  (/)  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
295, 12lssss 15972 . . . . . . . 8  |-  ( U  e.  S  ->  U  C_  V )
3011, 29syl 16 . . . . . . 7  |-  ( ph  ->  U  C_  V )
3130ssdifssd 3449 . . . . . 6  |-  ( ph  ->  ( U  \  {
( 0g `  W
) } )  C_  V )
3231sseld 3311 . . . . 5  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  z  e.  V ) )
33 lspprat.x . . . . . 6  |-  ( ph  ->  X  e.  V )
34 lspprat.y . . . . . 6  |-  ( ph  ->  Y  e.  V )
35 lspprat.p . . . . . 6  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
365, 12, 17, 2, 11, 33, 34, 35, 6lsppratlem6 16183 . . . . 5  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  U  =  ( N `  { z } ) ) )
3732, 36jcad 520 . . . 4  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  (
z  e.  V  /\  U  =  ( N `  { z } ) ) ) )
3837eximdv 1629 . . 3  |-  ( ph  ->  ( E. z  z  e.  ( U  \  { ( 0g `  W ) } )  ->  E. z ( z  e.  V  /\  U  =  ( N `  { z } ) ) ) )
39 n0 3601 . . 3  |-  ( ( U  \  { ( 0g `  W ) } )  =/=  (/)  <->  E. z 
z  e.  ( U 
\  { ( 0g
`  W ) } ) )
40 df-rex 2676 . . 3  |-  ( E. z  e.  V  U  =  ( N `  { z } )  <->  E. z ( z  e.  V  /\  U  =  ( N `  {
z } ) ) )
4138, 39, 403imtr4g 262 . 2  |-  ( ph  ->  ( ( U  \  { ( 0g `  W ) } )  =/=  (/)  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
4228, 41pm2.61dne 2648 1  |-  ( ph  ->  E. z  e.  V  U  =  ( N `  { z } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671    \ cdif 3281    C_ wss 3284    C. wpss 3285   (/)c0 3592   {csn 3778   {cpr 3779   ` cfv 5417   Basecbs 13428   0gc0g 13682   LModclmod 15909   LSubSpclss 15967   LSpanclspn 16006   LVecclvec 16133
This theorem is referenced by:  dvh3dim3N  31936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-tpos 6442  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-0g 13686  df-mnd 14649  df-grp 14771  df-minusg 14772  df-sbg 14773  df-cmn 15373  df-abl 15374  df-mgp 15608  df-rng 15622  df-ur 15624  df-oppr 15687  df-dvdsr 15705  df-unit 15706  df-invr 15736  df-drng 15796  df-lmod 15911  df-lss 15968  df-lsp 16007  df-lvec 16134
  Copyright terms: Public domain W3C validator