MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprat Structured version   Unicode version

Theorem lspprat 16230
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if  z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
Assertion
Ref Expression
lspprat  |-  ( ph  ->  E. z  e.  V  U  =  ( N `  { z } ) )
Distinct variable groups:    z, N    z, U    z, V    z, W    ph, z
Allowed substitution hints:    S( z)    X( z)    Y( z)

Proof of Theorem lspprat
StepHypRef Expression
1 ssdif0 3688 . . 3  |-  ( U 
C_  { ( 0g
`  W ) }  <-> 
( U  \  {
( 0g `  W
) } )  =  (/) )
2 lspprat.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 16183 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
5 lspprat.v . . . . . . . 8  |-  V  =  ( Base `  W
)
6 eqid 2438 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
75, 6lmod0vcl 15984 . . . . . . 7  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
84, 7syl 16 . . . . . 6  |-  ( ph  ->  ( 0g `  W
)  e.  V )
98adantr 453 . . . . 5  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  ( 0g `  W )  e.  V )
10 simpr 449 . . . . . . 7  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  C_ 
{ ( 0g `  W ) } )
11 lspprat.u . . . . . . . . 9  |-  ( ph  ->  U  e.  S )
12 lspprat.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  W )
136, 12lss0ss 16030 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  { ( 0g `  W ) }  C_  U )
144, 11, 13syl2anc 644 . . . . . . . 8  |-  ( ph  ->  { ( 0g `  W ) }  C_  U )
1514adantr 453 . . . . . . 7  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  { ( 0g `  W ) }  C_  U )
1610, 15eqssd 3367 . . . . . 6  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  =  { ( 0g `  W ) } )
17 lspprat.n . . . . . . . . 9  |-  N  =  ( LSpan `  W )
186, 17lspsn0 16089 . . . . . . . 8  |-  ( W  e.  LMod  ->  ( N `
 { ( 0g
`  W ) } )  =  { ( 0g `  W ) } )
194, 18syl 16 . . . . . . 7  |-  ( ph  ->  ( N `  {
( 0g `  W
) } )  =  { ( 0g `  W ) } )
2019adantr 453 . . . . . 6  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  ( N `  { ( 0g `  W ) } )  =  { ( 0g `  W ) } )
2116, 20eqtr4d 2473 . . . . 5  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  U  =  ( N `  { ( 0g `  W ) } ) )
22 sneq 3827 . . . . . . . 8  |-  ( z  =  ( 0g `  W )  ->  { z }  =  { ( 0g `  W ) } )
2322fveq2d 5735 . . . . . . 7  |-  ( z  =  ( 0g `  W )  ->  ( N `  { z } )  =  ( N `  { ( 0g `  W ) } ) )
2423eqeq2d 2449 . . . . . 6  |-  ( z  =  ( 0g `  W )  ->  ( U  =  ( N `  { z } )  <-> 
U  =  ( N `
 { ( 0g
`  W ) } ) ) )
2524rspcev 3054 . . . . 5  |-  ( ( ( 0g `  W
)  e.  V  /\  U  =  ( N `  { ( 0g `  W ) } ) )  ->  E. z  e.  V  U  =  ( N `  { z } ) )
269, 21, 25syl2anc 644 . . . 4  |-  ( (
ph  /\  U  C_  { ( 0g `  W ) } )  ->  E. z  e.  V  U  =  ( N `  { z } ) )
2726ex 425 . . 3  |-  ( ph  ->  ( U  C_  { ( 0g `  W ) }  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
281, 27syl5bir 211 . 2  |-  ( ph  ->  ( ( U  \  { ( 0g `  W ) } )  =  (/)  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
295, 12lssss 16018 . . . . . . . 8  |-  ( U  e.  S  ->  U  C_  V )
3011, 29syl 16 . . . . . . 7  |-  ( ph  ->  U  C_  V )
3130ssdifssd 3487 . . . . . 6  |-  ( ph  ->  ( U  \  {
( 0g `  W
) } )  C_  V )
3231sseld 3349 . . . . 5  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  z  e.  V ) )
33 lspprat.x . . . . . 6  |-  ( ph  ->  X  e.  V )
34 lspprat.y . . . . . 6  |-  ( ph  ->  Y  e.  V )
35 lspprat.p . . . . . 6  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
365, 12, 17, 2, 11, 33, 34, 35, 6lsppratlem6 16229 . . . . 5  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  U  =  ( N `  { z } ) ) )
3732, 36jcad 521 . . . 4  |-  ( ph  ->  ( z  e.  ( U  \  { ( 0g `  W ) } )  ->  (
z  e.  V  /\  U  =  ( N `  { z } ) ) ) )
3837eximdv 1633 . . 3  |-  ( ph  ->  ( E. z  z  e.  ( U  \  { ( 0g `  W ) } )  ->  E. z ( z  e.  V  /\  U  =  ( N `  { z } ) ) ) )
39 n0 3639 . . 3  |-  ( ( U  \  { ( 0g `  W ) } )  =/=  (/)  <->  E. z 
z  e.  ( U 
\  { ( 0g
`  W ) } ) )
40 df-rex 2713 . . 3  |-  ( E. z  e.  V  U  =  ( N `  { z } )  <->  E. z ( z  e.  V  /\  U  =  ( N `  {
z } ) ) )
4138, 39, 403imtr4g 263 . 2  |-  ( ph  ->  ( ( U  \  { ( 0g `  W ) } )  =/=  (/)  ->  E. z  e.  V  U  =  ( N `  { z } ) ) )
4228, 41pm2.61dne 2683 1  |-  ( ph  ->  E. z  e.  V  U  =  ( N `  { z } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    \ cdif 3319    C_ wss 3322    C. wpss 3323   (/)c0 3630   {csn 3816   {cpr 3817   ` cfv 5457   Basecbs 13474   0gc0g 13728   LModclmod 15955   LSubSpclss 16013   LSpanclspn 16052   LVecclvec 16179
This theorem is referenced by:  dvh3dim3N  32321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-drng 15842  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lvec 16180
  Copyright terms: Public domain W3C validator