MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Unicode version

Theorem lsppratlem3 16213
Description: Lemma for lspprat 16217. In the first case of lsppratlem1 16211, since  x  e/  ( N `  (/) ), also  Y  e.  ( N `  {
x } ), and since  y  e.  ( N `  { X ,  Y } )  C_  ( N `  { X ,  x } ) and  y  e/  ( N `  { x } ), we have  X  e.  ( N `  { x ,  y } ) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
lsppratlem1.o  |-  .0.  =  ( 0g `  W )
lsppratlem1.x2  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
lsppratlem1.y2  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
lsppratlem3.x3  |-  ( ph  ->  x  e.  ( N `
 { Y }
) )
Assertion
Ref Expression
lsppratlem3  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 16170 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
4 lspprat.y . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
54snssd 3935 . . . . . . 7  |-  ( ph  ->  { Y }  C_  V )
6 lspprat.v . . . . . . . 8  |-  V  =  ( Base `  W
)
7 lspprat.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
86, 7lspssv 16051 . . . . . . 7  |-  ( ( W  e.  LMod  /\  { Y }  C_  V )  ->  ( N `  { Y } )  C_  V )
93, 5, 8syl2anc 643 . . . . . 6  |-  ( ph  ->  ( N `  { Y } )  C_  V
)
10 lsppratlem3.x3 . . . . . 6  |-  ( ph  ->  x  e.  ( N `
 { Y }
) )
119, 10sseldd 3341 . . . . 5  |-  ( ph  ->  x  e.  V )
1211snssd 3935 . . . 4  |-  ( ph  ->  { x }  C_  V )
13 lspprat.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lspprat.p . . . . . . . 8  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
1514pssssd 3436 . . . . . . 7  |-  ( ph  ->  U  C_  ( N `  { X ,  Y } ) )
1613snssd 3935 . . . . . . . . . 10  |-  ( ph  ->  { X }  C_  V )
1712, 16unssd 3515 . . . . . . . . 9  |-  ( ph  ->  ( { x }  u.  { X } ) 
C_  V )
18 lspprat.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  W )
196, 18, 7lspcl 16044 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V )  ->  ( N `  ( {
x }  u.  { X } ) )  e.  S )
203, 17, 19syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( N `  ( { x }  u.  { X } ) )  e.  S )
21 df-pr 3813 . . . . . . . . 9  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
226, 7lspssid 16053 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V )  ->  ( { x }  u.  { X } )  C_  ( N `  ( { x }  u.  { X } ) ) )
233, 17, 22syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( { x }  u.  { X } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
2423unssbd 3517 . . . . . . . . . 10  |-  ( ph  ->  { X }  C_  ( N `  ( { x }  u.  { X } ) ) )
25 ssun1 3502 . . . . . . . . . . . . . 14  |-  { x }  C_  ( { x }  u.  { X } )
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  { x }  C_  ( { x }  u.  { X } ) )
276, 7lspss 16052 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  ( { x }  u.  { X } )  C_  V  /\  { x }  C_  ( { x }  u.  { X } ) )  ->  ( N `  { x } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
283, 17, 26, 27syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  {
x } )  C_  ( N `  ( { x }  u.  { X } ) ) )
29 0ss 3648 . . . . . . . . . . . . . . 15  |-  (/)  C_  V
3029a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  -> 
(/)  C_  V )
31 uncom 3483 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u. 
{ Y } )  =  ( { Y }  u.  (/) )
32 un0 3644 . . . . . . . . . . . . . . . . . 18  |-  ( { Y }  u.  (/) )  =  { Y }
3331, 32eqtri 2455 . . . . . . . . . . . . . . . . 17  |-  ( (/)  u. 
{ Y } )  =  { Y }
3433fveq2i 5723 . . . . . . . . . . . . . . . 16  |-  ( N `
 ( (/)  u.  { Y } ) )  =  ( N `  { Y } )
3510, 34syl6eleqr 2526 . . . . . . . . . . . . . . 15  |-  ( ph  ->  x  e.  ( N `
 ( (/)  u.  { Y } ) ) )
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
3736eldifbd 3325 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  x  e.  {  .0.  } )
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18  |-  .0.  =  ( 0g `  W )
3938, 7lsp0 16077 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  LMod  ->  ( N `
 (/) )  =  {  .0.  } )
403, 39syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N `  (/) )  =  {  .0.  } )
4137, 40neleqtrrd 2531 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  x  e.  ( N `  (/) ) )
4235, 41eldifd 3323 . . . . . . . . . . . . . 14  |-  ( ph  ->  x  e.  ( ( N `  ( (/)  u. 
{ Y } ) )  \  ( N `
 (/) ) ) )
436, 18, 7lspsolv 16207 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LVec  /\  ( (/)  C_  V  /\  Y  e.  V  /\  x  e.  ( ( N `  ( (/)  u.  { Y } ) )  \ 
( N `  (/) ) ) ) )  ->  Y  e.  ( N `  ( (/) 
u.  { x }
) ) )
441, 30, 4, 42, 43syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( N `
 ( (/)  u.  {
x } ) ) )
45 uncom 3483 . . . . . . . . . . . . . . 15  |-  ( (/)  u. 
{ x } )  =  ( { x }  u.  (/) )
46 un0 3644 . . . . . . . . . . . . . . 15  |-  ( { x }  u.  (/) )  =  { x }
4745, 46eqtri 2455 . . . . . . . . . . . . . 14  |-  ( (/)  u. 
{ x } )  =  { x }
4847fveq2i 5723 . . . . . . . . . . . . 13  |-  ( N `
 ( (/)  u.  {
x } ) )  =  ( N `  { x } )
4944, 48syl6eleq 2525 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  ( N `
 { x }
) )
5028, 49sseldd 3341 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( N `
 ( { x }  u.  { X } ) ) )
5150snssd 3935 . . . . . . . . . 10  |-  ( ph  ->  { Y }  C_  ( N `  ( { x }  u.  { X } ) ) )
5224, 51unssd 3515 . . . . . . . . 9  |-  ( ph  ->  ( { X }  u.  { Y } ) 
C_  ( N `  ( { x }  u.  { X } ) ) )
5321, 52syl5eqss 3384 . . . . . . . 8  |-  ( ph  ->  { X ,  Y }  C_  ( N `  ( { x }  u.  { X } ) ) )
5418, 7lspssp 16056 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  ( {
x }  u.  { X } ) )  e.  S  /\  { X ,  Y }  C_  ( N `  ( {
x }  u.  { X } ) ) )  ->  ( N `  { X ,  Y }
)  C_  ( N `  ( { x }  u.  { X } ) ) )
553, 20, 53, 54syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( N `  { X ,  Y }
)  C_  ( N `  ( { x }  u.  { X } ) ) )
5615, 55sstrd 3350 . . . . . 6  |-  ( ph  ->  U  C_  ( N `  ( { x }  u.  { X } ) ) )
5756ssdifd 3475 . . . . 5  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  ( ( N `  ( { x }  u.  { X } ) ) 
\  ( N `  { x } ) ) )
58 lsppratlem1.y2 . . . . 5  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
5957, 58sseldd 3341 . . . 4  |-  ( ph  ->  y  e.  ( ( N `  ( { x }  u.  { X } ) )  \ 
( N `  {
x } ) ) )
606, 18, 7lspsolv 16207 . . . 4  |-  ( ( W  e.  LVec  /\  ( { x }  C_  V  /\  X  e.  V  /\  y  e.  (
( N `  ( { x }  u.  { X } ) ) 
\  ( N `  { x } ) ) ) )  ->  X  e.  ( N `  ( { x }  u.  { y } ) ) )
611, 12, 13, 59, 60syl13anc 1186 . . 3  |-  ( ph  ->  X  e.  ( N `
 ( { x }  u.  { y } ) ) )
62 df-pr 3813 . . . 4  |-  { x ,  y }  =  ( { x }  u.  { y } )
6362fveq2i 5723 . . 3  |-  ( N `
 { x ,  y } )  =  ( N `  ( { x }  u.  { y } ) )
6461, 63syl6eleqr 2526 . 2  |-  ( ph  ->  X  e.  ( N `
 { x ,  y } ) )
65 lspprat.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  S )
666, 18lssss 16005 . . . . . . . . . 10  |-  ( U  e.  S  ->  U  C_  V )
6765, 66syl 16 . . . . . . . . 9  |-  ( ph  ->  U  C_  V )
6867ssdifssd 3477 . . . . . . . 8  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  V )
6968, 58sseldd 3341 . . . . . . 7  |-  ( ph  ->  y  e.  V )
7069snssd 3935 . . . . . 6  |-  ( ph  ->  { y }  C_  V )
7112, 70unssd 3515 . . . . 5  |-  ( ph  ->  ( { x }  u.  { y } ) 
C_  V )
7262, 71syl5eqss 3384 . . . 4  |-  ( ph  ->  { x ,  y }  C_  V )
73 snsspr1 3939 . . . . 5  |-  { x }  C_  { x ,  y }
7473a1i 11 . . . 4  |-  ( ph  ->  { x }  C_  { x ,  y } )
756, 7lspss 16052 . . . 4  |-  ( ( W  e.  LMod  /\  {
x ,  y } 
C_  V  /\  {
x }  C_  { x ,  y } )  ->  ( N `  { x } ) 
C_  ( N `  { x ,  y } ) )
763, 72, 74, 75syl3anc 1184 . . 3  |-  ( ph  ->  ( N `  {
x } )  C_  ( N `  { x ,  y } ) )
7776, 49sseldd 3341 . 2  |-  ( ph  ->  Y  e.  ( N `
 { x ,  y } ) )
7864, 77jca 519 1  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309    u. cun 3310    C_ wss 3312    C. wpss 3313   (/)c0 3620   {csn 3806   {cpr 3807   ` cfv 5446   Basecbs 13461   0gc0g 13715   LModclmod 15942   LSubSpclss 16000   LSpanclspn 16039   LVecclvec 16166
This theorem is referenced by:  lsppratlem5  16215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-drng 15829  df-lmod 15944  df-lss 16001  df-lsp 16040  df-lvec 16167
  Copyright terms: Public domain W3C validator