MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Unicode version

Theorem lsppratlem4 16215
Description: Lemma for lspprat 16218. In the second case of lsppratlem1 16212,  y  e.  ( N `  { X ,  Y } )  C_  ( N `  { x ,  Y } ) and  y  e/  ( N `  { x } ) implies  Y  e.  ( N `  { x ,  y } ) and thus  X  e.  ( N `  { x ,  Y } )  C_  ( N `  { x ,  y } ) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v  |-  V  =  ( Base `  W
)
lspprat.s  |-  S  =  ( LSubSp `  W )
lspprat.n  |-  N  =  ( LSpan `  W )
lspprat.w  |-  ( ph  ->  W  e.  LVec )
lspprat.u  |-  ( ph  ->  U  e.  S )
lspprat.x  |-  ( ph  ->  X  e.  V )
lspprat.y  |-  ( ph  ->  Y  e.  V )
lspprat.p  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
lsppratlem1.o  |-  .0.  =  ( 0g `  W )
lsppratlem1.x2  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
lsppratlem1.y2  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
lsppratlem4.x3  |-  ( ph  ->  X  e.  ( N `
 { x ,  Y } ) )
Assertion
Ref Expression
lsppratlem4  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 16171 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lspprat.v . . . . 5  |-  V  =  ( Base `  W
)
5 lspprat.s . . . . 5  |-  S  =  ( LSubSp `  W )
6 lspprat.n . . . . 5  |-  N  =  ( LSpan `  W )
7 lspprat.u . . . . . . . 8  |-  ( ph  ->  U  e.  S )
84, 5lssss 16006 . . . . . . . 8  |-  ( U  e.  S  ->  U  C_  V )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  U  C_  V )
109ssdifssd 3478 . . . . . 6  |-  ( ph  ->  ( U  \  {  .0.  } )  C_  V
)
11 lsppratlem1.x2 . . . . . 6  |-  ( ph  ->  x  e.  ( U 
\  {  .0.  }
) )
1210, 11sseldd 3342 . . . . 5  |-  ( ph  ->  x  e.  V )
139ssdifssd 3478 . . . . . 6  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  V )
14 lsppratlem1.y2 . . . . . 6  |-  ( ph  ->  y  e.  ( U 
\  ( N `  { x } ) ) )
1513, 14sseldd 3342 . . . . 5  |-  ( ph  ->  y  e.  V )
164, 5, 6, 3, 12, 15lspprcl 16047 . . . 4  |-  ( ph  ->  ( N `  {
x ,  y } )  e.  S )
17 df-pr 3814 . . . . 5  |-  { x ,  Y }  =  ( { x }  u.  { Y } )
18 snsspr1 3940 . . . . . . 7  |-  { x }  C_  { x ,  y }
19 prssi 3947 . . . . . . . . 9  |-  ( ( x  e.  V  /\  y  e.  V )  ->  { x ,  y }  C_  V )
2012, 15, 19syl2anc 643 . . . . . . . 8  |-  ( ph  ->  { x ,  y }  C_  V )
214, 6lspssid 16054 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  {
x ,  y } 
C_  V )  ->  { x ,  y }  C_  ( N `  { x ,  y } ) )
223, 20, 21syl2anc 643 . . . . . . 7  |-  ( ph  ->  { x ,  y }  C_  ( N `  { x ,  y } ) )
2318, 22syl5ss 3352 . . . . . 6  |-  ( ph  ->  { x }  C_  ( N `  { x ,  y } ) )
2412snssd 3936 . . . . . . . . 9  |-  ( ph  ->  { x }  C_  V )
25 lspprat.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  V )
26 lspprat.p . . . . . . . . . . . . . 14  |-  ( ph  ->  U  C.  ( N `
 { X ,  Y } ) )
2726pssssd 3437 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  ( N `  { X ,  Y } ) )
284, 5, 6, 3, 12, 25lspprcl 16047 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N `  {
x ,  Y }
)  e.  S )
29 df-pr 3814 . . . . . . . . . . . . . . 15  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
30 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  ( N `
 { x ,  Y } ) )
3130snssd 3936 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { X }  C_  ( N `  { x ,  Y } ) )
32 snsspr2 3941 . . . . . . . . . . . . . . . . 17  |-  { Y }  C_  { x ,  Y }
33 prssi 3947 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  V  /\  Y  e.  V )  ->  { x ,  Y }  C_  V )
3412, 25, 33syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  { x ,  Y }  C_  V )
354, 6lspssid 16054 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  {
x ,  Y }  C_  V )  ->  { x ,  Y }  C_  ( N `  { x ,  Y } ) )
363, 34, 35syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  { x ,  Y }  C_  ( N `  { x ,  Y } ) )
3732, 36syl5ss 3352 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y }  C_  ( N `  { x ,  Y } ) )
3831, 37unssd 3516 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( { X }  u.  { Y } ) 
C_  ( N `  { x ,  Y } ) )
3929, 38syl5eqss 3385 . . . . . . . . . . . . . 14  |-  ( ph  ->  { X ,  Y }  C_  ( N `  { x ,  Y } ) )
405, 6lspssp 16057 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( N `  { x ,  Y } )  e.  S  /\  { X ,  Y }  C_  ( N `  { x ,  Y } ) )  ->  ( N `  { X ,  Y }
)  C_  ( N `  { x ,  Y } ) )
413, 28, 39, 40syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X ,  Y }
)  C_  ( N `  { x ,  Y } ) )
4227, 41sstrd 3351 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  ( N `  { x ,  Y } ) )
4317fveq2i 5724 . . . . . . . . . . . 12  |-  ( N `
 { x ,  Y } )  =  ( N `  ( { x }  u.  { Y } ) )
4442, 43syl6sseq 3387 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  ( N `  ( { x }  u.  { Y } ) ) )
4544ssdifd 3476 . . . . . . . . . 10  |-  ( ph  ->  ( U  \  ( N `  { x } ) )  C_  ( ( N `  ( { x }  u.  { Y } ) ) 
\  ( N `  { x } ) ) )
4645, 14sseldd 3342 . . . . . . . . 9  |-  ( ph  ->  y  e.  ( ( N `  ( { x }  u.  { Y } ) )  \ 
( N `  {
x } ) ) )
474, 5, 6lspsolv 16208 . . . . . . . . 9  |-  ( ( W  e.  LVec  /\  ( { x }  C_  V  /\  Y  e.  V  /\  y  e.  (
( N `  ( { x }  u.  { Y } ) ) 
\  ( N `  { x } ) ) ) )  ->  Y  e.  ( N `  ( { x }  u.  { y } ) ) )
481, 24, 25, 46, 47syl13anc 1186 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( N `
 ( { x }  u.  { y } ) ) )
49 df-pr 3814 . . . . . . . . 9  |-  { x ,  y }  =  ( { x }  u.  { y } )
5049fveq2i 5724 . . . . . . . 8  |-  ( N `
 { x ,  y } )  =  ( N `  ( { x }  u.  { y } ) )
5148, 50syl6eleqr 2527 . . . . . . 7  |-  ( ph  ->  Y  e.  ( N `
 { x ,  y } ) )
5251snssd 3936 . . . . . 6  |-  ( ph  ->  { Y }  C_  ( N `  { x ,  y } ) )
5323, 52unssd 3516 . . . . 5  |-  ( ph  ->  ( { x }  u.  { Y } ) 
C_  ( N `  { x ,  y } ) )
5417, 53syl5eqss 3385 . . . 4  |-  ( ph  ->  { x ,  Y }  C_  ( N `  { x ,  y } ) )
555, 6lspssp 16057 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  { x ,  y } )  e.  S  /\  {
x ,  Y }  C_  ( N `  {
x ,  y } ) )  ->  ( N `  { x ,  Y } )  C_  ( N `  { x ,  y } ) )
563, 16, 54, 55syl3anc 1184 . . 3  |-  ( ph  ->  ( N `  {
x ,  Y }
)  C_  ( N `  { x ,  y } ) )
5756, 30sseldd 3342 . 2  |-  ( ph  ->  X  e.  ( N `
 { x ,  y } ) )
5857, 51jca 519 1  |-  ( ph  ->  ( X  e.  ( N `  { x ,  y } )  /\  Y  e.  ( N `  { x ,  y } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3310    u. cun 3311    C_ wss 3313    C. wpss 3314   {csn 3807   {cpr 3808   ` cfv 5447   Basecbs 13462   0gc0g 13716   LModclmod 15943   LSubSpclss 16001   LSpanclspn 16040   LVecclvec 16167
This theorem is referenced by:  lsppratlem5  16216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-tpos 6472  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-3 10052  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-0g 13720  df-mnd 14683  df-grp 14805  df-minusg 14806  df-sbg 14807  df-cmn 15407  df-abl 15408  df-mgp 15642  df-rng 15656  df-ur 15658  df-oppr 15721  df-dvdsr 15739  df-unit 15740  df-invr 15770  df-drng 15830  df-lmod 15945  df-lss 16002  df-lsp 16041  df-lvec 16168
  Copyright terms: Public domain W3C validator