MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppreli Unicode version

Theorem lsppreli 15843
Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lsppreli.v  |-  V  =  ( Base `  W
)
lsppreli.p  |-  .+  =  ( +g  `  W )
lsppreli.t  |-  .x.  =  ( .s `  W )
lsppreli.f  |-  F  =  (Scalar `  W )
lsppreli.k  |-  K  =  ( Base `  F
)
lsppreli.n  |-  N  =  ( LSpan `  W )
lsppreli.w  |-  ( ph  ->  W  e.  LMod )
lsppreli.a  |-  ( ph  ->  A  e.  K )
lsppreli.b  |-  ( ph  ->  B  e.  K )
lsppreli.x  |-  ( ph  ->  X  e.  V )
lsppreli.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lsppreli  |-  ( ph  ->  ( ( A  .x.  X )  .+  ( B  .x.  Y ) )  e.  ( N `  { X ,  Y }
) )

Proof of Theorem lsppreli
StepHypRef Expression
1 lsppreli.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lsppreli.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lsppreli.v . . . . 5  |-  V  =  ( Base `  W
)
4 lsppreli.n . . . . 5  |-  N  =  ( LSpan `  W )
53, 4lspsnsubg 15737 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
61, 2, 5syl2anc 642 . . 3  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
7 lsppreli.y . . . 4  |-  ( ph  ->  Y  e.  V )
83, 4lspsnsubg 15737 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
91, 7, 8syl2anc 642 . . 3  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  W ) )
10 lsppreli.t . . . 4  |-  .x.  =  ( .s `  W )
11 lsppreli.f . . . 4  |-  F  =  (Scalar `  W )
12 lsppreli.k . . . 4  |-  K  =  ( Base `  F
)
13 lsppreli.a . . . 4  |-  ( ph  ->  A  e.  K )
143, 10, 11, 12, 4, 1, 13, 2lspsneli 15758 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  ( N `
 { X }
) )
15 lsppreli.b . . . 4  |-  ( ph  ->  B  e.  K )
163, 10, 11, 12, 4, 1, 15, 7lspsneli 15758 . . 3  |-  ( ph  ->  ( B  .x.  Y
)  e.  ( N `
 { Y }
) )
17 lsppreli.p . . . 4  |-  .+  =  ( +g  `  W )
18 eqid 2283 . . . 4  |-  ( LSSum `  W )  =  (
LSSum `  W )
1917, 18lsmelvali 14961 . . 3  |-  ( ( ( ( N `  { X } )  e.  (SubGrp `  W )  /\  ( N `  { Y } )  e.  (SubGrp `  W ) )  /\  ( ( A  .x.  X )  e.  ( N `  { X } )  /\  ( B  .x.  Y )  e.  ( N `  { Y } ) ) )  ->  ( ( A 
.x.  X )  .+  ( B  .x.  Y ) )  e.  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
206, 9, 14, 16, 19syl22anc 1183 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .+  ( B  .x.  Y ) )  e.  ( ( N `
 { X }
) ( LSSum `  W
) ( N `  { Y } ) ) )
213, 4, 18, 1, 2, 7lsmpr 15842 . 2  |-  ( ph  ->  ( N `  { X ,  Y }
)  =  ( ( N `  { X } ) ( LSSum `  W ) ( N `
 { Y }
) ) )
2220, 21eleqtrrd 2360 1  |-  ( ph  ->  ( ( A  .x.  X )  .+  ( B  .x.  Y ) )  e.  ( N `  { X ,  Y }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {csn 3640   {cpr 3641   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208  Scalarcsca 13211   .scvsca 13212  SubGrpcsubg 14615   LSSumclsm 14945   LModclmod 15627   LSpanclspn 15728
This theorem is referenced by:  lspexch  15882  baerlem3lem1  31897  baerlem5alem1  31898  baerlem5blem1  31899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729
  Copyright terms: Public domain W3C validator