MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel3 Unicode version

Theorem lspsnel3 15748
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 22151 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s  |-  S  =  ( LSubSp `  W )
lspsnss.n  |-  N  =  ( LSpan `  W )
lspsnel3.w  |-  ( ph  ->  W  e.  LMod )
lspsnel3.u  |-  ( ph  ->  U  e.  S )
lspsnel3.x  |-  ( ph  ->  X  e.  U )
lspsnel3.y  |-  ( ph  ->  Y  e.  ( N `
 { X }
) )
Assertion
Ref Expression
lspsnel3  |-  ( ph  ->  Y  e.  U )

Proof of Theorem lspsnel3
StepHypRef Expression
1 lspsnel3.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lspsnel3.u . . 3  |-  ( ph  ->  U  e.  S )
3 lspsnel3.x . . 3  |-  ( ph  ->  X  e.  U )
4 lspsnss.s . . . 4  |-  S  =  ( LSubSp `  W )
5 lspsnss.n . . . 4  |-  N  =  ( LSpan `  W )
64, 5lspsnss 15747 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U
)
71, 2, 3, 6syl3anc 1182 . 2  |-  ( ph  ->  ( N `  { X } )  C_  U
)
8 lspsnel3.y . 2  |-  ( ph  ->  Y  e.  ( N `
 { X }
) )
97, 8sseldd 3181 1  |-  ( ph  ->  Y  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    C_ wss 3152   {csn 3640   ` cfv 5255   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728
This theorem is referenced by:  lspsnel4  15877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-0g 13404  df-mnd 14367  df-grp 14489  df-lmod 15629  df-lss 15690  df-lsp 15729
  Copyright terms: Public domain W3C validator