MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Unicode version

Theorem lspsnid 16071
Description: A vector belongs to the span of its singleton. (spansnid 23067 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v  |-  V  =  ( Base `  W
)
lspsnid.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnid  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 3944 . . 3  |-  ( X  e.  V  ->  { X }  C_  V )
2 lspsnid.v . . . 4  |-  V  =  ( Base `  W
)
3 lspsnid.n . . . 4  |-  N  =  ( LSpan `  W )
42, 3lspssid 16063 . . 3  |-  ( ( W  e.  LMod  /\  { X }  C_  V )  ->  { X }  C_  ( N `  { X } ) )
51, 4sylan2 462 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { X }  C_  ( N `  { X } ) )
6 snssg 3934 . . 3  |-  ( X  e.  V  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
76adantl 454 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
85, 7mpbird 225 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3322   {csn 3816   ` cfv 5456   Basecbs 13471   LModclmod 15952   LSpanclspn 16049
This theorem is referenced by:  lspsnel6  16072  lssats2  16078  lspsneli  16079  lspsn  16080  lspsneq0  16090  lsmelval2  16159  lspprabs  16169  lspabs3  16195  lspsnel4  16198  lspdisjb  16200  lspfixed  16202  lshpnelb  29784  lsateln0  29795  lssats  29812  dia1dimid  31863  dochnel  32193  dihjat1lem  32228  dochsnkr2cl  32274  lcfrvalsnN  32341  lcfrlem15  32357  mapdpglem2  32473  mapdpglem9  32480  mapdpglem12  32483  mapdpglem14  32485  mapdindp0  32519  mapdindp3  32522  hdmap11lem2  32645  hdmaprnlem3N  32653  hdmaprnlem7N  32658  hdmaprnlem8N  32659  hdmaprnlem3eN  32661  hdmaplkr  32716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-riota 6551  df-0g 13729  df-mnd 14692  df-grp 14814  df-lmod 15954  df-lss 16011  df-lsp 16050
  Copyright terms: Public domain W3C validator