MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnneg Structured version   Unicode version

Theorem lspsnneg 16083
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v  |-  V  =  ( Base `  W
)
lspsnneg.m  |-  M  =  ( inv g `  W )
lspsnneg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnneg  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lspsnneg.m . . . . . 6  |-  M  =  ( inv g `  W )
3 eqid 2437 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2437 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2437 . . . . . 6  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
6 eqid 2437 . . . . . 6  |-  ( inv g `  (Scalar `  W ) )  =  ( inv g `  (Scalar `  W ) )
71, 2, 3, 4, 5, 6lmodvneg1 15988 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X )  =  ( M `
 X ) )
87sneqd 3828 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) }  =  {
( M `  X
) } )
98fveq2d 5733 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  =  ( N `  {
( M `  X
) } ) )
10 simpl 445 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
113lmodfgrp 15960 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
12 eqid 2437 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
133, 12, 5lmod1cl 15978 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
1412, 6grpinvcl 14851 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( inv g `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
1511, 13, 14syl2anc 644 . . . . 5  |-  ( W  e.  LMod  ->  ( ( inv g `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
1615adantr 453 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( inv g `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
17 simpr 449 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
18 lspsnneg.n . . . . 5  |-  N  =  ( LSpan `  W )
193, 12, 1, 4, 18lspsnvsi 16081 . . . 4  |-  ( ( W  e.  LMod  /\  (
( inv g `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  X  e.  V )  ->  ( N `  { (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
2010, 16, 17, 19syl3anc 1185 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
219, 20eqsstr3d 3384 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  C_  ( N `  { X } ) )
221, 2lmodvnegcl 15986 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  X )  e.  V )
231, 2, 3, 4, 5, 6lmodvneg1 15988 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( M `  X )  e.  V )  ->  (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
2422, 23syldan 458 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
25 lmodgrp 15958 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
261, 2grpinvinv 14859 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( M `  ( M `  X )
)  =  X )
2725, 26sylan 459 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  ( M `  X ) )  =  X )
2824, 27eqtrd 2469 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  X )
2928sneqd 3828 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) }  =  { X } )
3029fveq2d 5733 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  =  ( N `  { X } ) )
313, 12, 1, 4, 18lspsnvsi 16081 . . . 4  |-  ( ( W  e.  LMod  /\  (
( inv g `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  ( M `  X )  e.  V
)  ->  ( N `  { ( ( ( inv g `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3210, 16, 22, 31syl3anc 1185 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( inv g `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3330, 32eqsstr3d 3384 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( M `  X ) } ) )
3421, 33eqssd 3366 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3321   {csn 3815   ` cfv 5455  (class class class)co 6082   Basecbs 13470  Scalarcsca 13533   .scvsca 13534   Grpcgrp 14686   inv gcminusg 14687   1rcur 15663   LModclmod 15951   LSpanclspn 16048
This theorem is referenced by:  lspsnsub  16084  lmodindp1  16091  lspsntrim  16171  baerlem5amN  32515  baerlem5bmN  32516  baerlem5abmN  32517  hdmap1neglem1N  32627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-plusg 13543  df-0g 13728  df-mnd 14691  df-grp 14813  df-minusg 14814  df-sbg 14815  df-mgp 15650  df-rng 15664  df-ur 15666  df-lmod 15953  df-lss 16010  df-lsp 16049
  Copyright terms: Public domain W3C validator