MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnvs Unicode version

Theorem lspsnvs 16113
Description: A non-zero scalar product does not change the span of a singleton. (spansncol 22918 analog.) (Contributed by NM, 23-Apr-2014.)
Hypotheses
Ref Expression
lspsnvs.v  |-  V  =  ( Base `  W
)
lspsnvs.f  |-  F  =  (Scalar `  W )
lspsnvs.t  |-  .x.  =  ( .s `  W )
lspsnvs.k  |-  K  =  ( Base `  F
)
lspsnvs.o  |-  .0.  =  ( 0g `  F )
lspsnvs.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnvs  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  {
( R  .x.  X
) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnvs
StepHypRef Expression
1 lveclmod 16105 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
213ad2ant1 978 . . 3  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  W  e.  LMod )
3 simp2l 983 . . 3  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  R  e.  K )
4 simp3 959 . . 3  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  X  e.  V )
5 lspsnvs.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsnvs.k . . . 4  |-  K  =  ( Base `  F
)
7 lspsnvs.v . . . 4  |-  V  =  ( Base `  W
)
8 lspsnvs.t . . . 4  |-  .x.  =  ( .s `  W )
9 lspsnvs.n . . . 4  |-  N  =  ( LSpan `  W )
105, 6, 7, 8, 9lspsnvsi 16007 . . 3  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( N `  { ( R  .x.  X ) } )  C_  ( N `  { X } ) )
112, 3, 4, 10syl3anc 1184 . 2  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  {
( R  .x.  X
) } )  C_  ( N `  { X } ) )
125lvecdrng 16104 . . . . . . . . 9  |-  ( W  e.  LVec  ->  F  e.  DivRing )
13123ad2ant1 978 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  F  e.  DivRing )
14 simp2r 984 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  R  =/=  .0.  )
15 lspsnvs.o . . . . . . . . 9  |-  .0.  =  ( 0g `  F )
16 eqid 2387 . . . . . . . . 9  |-  ( .r
`  F )  =  ( .r `  F
)
17 eqid 2387 . . . . . . . . 9  |-  ( 1r
`  F )  =  ( 1r `  F
)
18 eqid 2387 . . . . . . . . 9  |-  ( invr `  F )  =  (
invr `  F )
196, 15, 16, 17, 18drnginvrl 15781 . . . . . . . 8  |-  ( ( F  e.  DivRing  /\  R  e.  K  /\  R  =/= 
.0.  )  ->  (
( ( invr `  F
) `  R )
( .r `  F
) R )  =  ( 1r `  F
) )
2013, 3, 14, 19syl3anc 1184 . . . . . . 7  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( ( invr `  F ) `  R
) ( .r `  F ) R )  =  ( 1r `  F ) )
2120oveq1d 6035 . . . . . 6  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( ( (
invr `  F ) `  R ) ( .r
`  F ) R )  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
226, 15, 18drnginvrcl 15779 . . . . . . . 8  |-  ( ( F  e.  DivRing  /\  R  e.  K  /\  R  =/= 
.0.  )  ->  (
( invr `  F ) `  R )  e.  K
)
2313, 3, 14, 22syl3anc 1184 . . . . . . 7  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( invr `  F
) `  R )  e.  K )
247, 5, 8, 6, 16lmodvsass 15902 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
( ( invr `  F
) `  R )  e.  K  /\  R  e.  K  /\  X  e.  V ) )  -> 
( ( ( (
invr `  F ) `  R ) ( .r
`  F ) R )  .x.  X )  =  ( ( (
invr `  F ) `  R )  .x.  ( R  .x.  X ) ) )
252, 23, 3, 4, 24syl13anc 1186 . . . . . 6  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( ( (
invr `  F ) `  R ) ( .r
`  F ) R )  .x.  X )  =  ( ( (
invr `  F ) `  R )  .x.  ( R  .x.  X ) ) )
267, 5, 8, 17lmodvs1 15905 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
272, 4, 26syl2anc 643 . . . . . 6  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( 1r `  F )  .x.  X
)  =  X )
2821, 25, 273eqtr3d 2427 . . . . 5  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( ( ( invr `  F ) `  R
)  .x.  ( R  .x.  X ) )  =  X )
2928sneqd 3770 . . . 4  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  { ( ( (
invr `  F ) `  R )  .x.  ( R  .x.  X ) ) }  =  { X } )
3029fveq2d 5672 . . 3  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  {
( ( ( invr `  F ) `  R
)  .x.  ( R  .x.  X ) ) } )  =  ( N `
 { X }
) )
317, 5, 8, 6lmodvscl 15894 . . . . 5  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )
322, 3, 4, 31syl3anc 1184 . . . 4  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( R  .x.  X
)  e.  V )
335, 6, 7, 8, 9lspsnvsi 16007 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invr `  F ) `  R )  e.  K  /\  ( R  .x.  X
)  e.  V )  ->  ( N `  { ( ( (
invr `  F ) `  R )  .x.  ( R  .x.  X ) ) } )  C_  ( N `  { ( R  .x.  X ) } ) )
342, 23, 32, 33syl3anc 1184 . . 3  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  {
( ( ( invr `  F ) `  R
)  .x.  ( R  .x.  X ) ) } )  C_  ( N `  { ( R  .x.  X ) } ) )
3530, 34eqsstr3d 3326 . 2  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( R  .x.  X ) } ) )
3611, 35eqssd 3308 1  |-  ( ( W  e.  LVec  /\  ( R  e.  K  /\  R  =/=  .0.  )  /\  X  e.  V )  ->  ( N `  {
( R  .x.  X
) } )  =  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   {csn 3757   ` cfv 5394  (class class class)co 6020   Basecbs 13396   .rcmulr 13457  Scalarcsca 13459   .scvsca 13460   0gc0g 13650   1rcur 15589   invrcinvr 15703   DivRingcdr 15762   LModclmod 15877   LSpanclspn 15974   LVecclvec 16101
This theorem is referenced by:  lspsneleq  16114  lspsneq  16121  lspfixed  16127  islbs2  16153  mapdpglem22  31808  hdmap14lem1a  31984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-0g 13654  df-mnd 14617  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mgp 15576  df-rng 15590  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-drng 15764  df-lmod 15879  df-lss 15936  df-lsp 15975  df-lvec 16102
  Copyright terms: Public domain W3C validator