MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Unicode version

Theorem lspsolv 15912
Description: If  X is in the span of  A  u.  { Y } but not  A, then  Y is in the span of  A  u.  { X }. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v  |-  V  =  ( Base `  W
)
lspsolv.s  |-  S  =  ( LSubSp `  W )
lspsolv.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsolv  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )

Proof of Theorem lspsolv
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3  |-  V  =  ( Base `  W
)
2 lspsolv.s . . 3  |-  S  =  ( LSubSp `  W )
3 lspsolv.n . . 3  |-  N  =  ( LSpan `  W )
4 eqid 2296 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2296 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2296 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
7 eqid 2296 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
8 eqid 2296 . . 3  |-  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }  =  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }
9 lveclmod 15875 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
109adantr 451 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  W  e.  LMod )
11 simpr1 961 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  A  C_  V
)
12 simpr2 962 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  V
)
13 simpr3 963 . . . 4  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
14 eldifi 3311 . . . 4  |-  ( X  e.  ( ( N `
 ( A  u.  { Y } ) ) 
\  ( N `  A ) )  ->  X  e.  ( N `  ( A  u.  { Y } ) ) )
1513, 14syl 15 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( N `  ( A  u.  { Y }
) ) )
161, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15lspsolvlem 15911 . 2  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  E. r  e.  (
Base `  (Scalar `  W
) ) ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) )
174lvecdrng 15874 . . . . . . . . 9  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
1817ad2antrr 706 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
(Scalar `  W )  e.  DivRing )
19 simprl 732 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  e.  ( Base `  (Scalar `  W )
) )
2010adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  W  e.  LMod )
2112adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  V )
22 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
23 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( 0g
`  W )  =  ( 0g `  W
)
241, 4, 7, 22, 23lmod0vs 15679 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  ( 0g `  W ) )
2520, 21, 24syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y )  =  ( 0g `  W
) )
2625oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  ( X ( +g  `  W ) ( 0g
`  W ) ) )
27 difss 3316 . . . . . . . . . . . . . . 15  |-  ( ( N `  ( A  u.  { Y }
) )  \  ( N `  A )
)  C_  ( N `  ( A  u.  { Y } ) )
2811adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  V )
2921snssd 3776 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { Y }  C_  V
)
3028, 29unssd 3364 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { Y } )  C_  V
)
311, 3lspssv 15756 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  ( A  u.  { Y } )  C_  V
)  ->  ( N `  ( A  u.  { Y } ) )  C_  V )
3220, 30, 31syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { Y } ) )  C_  V )
3327, 32syl5ss 3203 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) )  C_  V
)
3413adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \  ( N `
 A ) ) )
3533, 34sseldd 3194 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  V )
361, 6, 23lmod0vrid 15677 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( 0g `  W ) )  =  X )
3720, 35, 36syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( 0g
`  W ) )  =  X )
3826, 37eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  X )
3938, 34eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
40 eldifn 3312 . . . . . . . . . 10  |-  ( ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) )  e.  ( ( N `  ( A  u.  { Y }
) )  \  ( N `  A )
)  ->  -.  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) )  e.  ( N `
 A ) )
4139, 40syl 15 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  -.  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) )
42 simprr 733 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  A ) )
43 oveq1 5881 . . . . . . . . . . . . 13  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( r ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
4443oveq2d 5890 . . . . . . . . . . . 12  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) )  =  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
4544eleq1d 2362 . . . . . . . . . . 11  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
)  <->  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y ) )  e.  ( N `  A ) ) )
4642, 45syl5ibcom 211 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r  =  ( 0g `  (Scalar `  W ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) ) )
4746necon3bd 2496 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( -.  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) )  e.  ( N `
 A )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) ) )
4841, 47mpd 14 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) )
49 eqid 2296 . . . . . . . . 9  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
50 eqid 2296 . . . . . . . . 9  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
51 eqid 2296 . . . . . . . . 9  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
525, 22, 49, 50, 51drnginvrl 15547 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r )  =  ( 1r `  (Scalar `  W ) ) )
5318, 19, 48, 52syl3anc 1182 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .r `  (Scalar `  W ) ) r )  =  ( 1r
`  (Scalar `  W )
) )
5453oveq1d 5889 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) Y ) )
555, 22, 51drnginvrcl 15545 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  r )  e.  ( Base `  (Scalar `  W ) ) )
5618, 19, 48, 55syl3anc 1182 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) ) )
571, 4, 7, 5, 49lmodvsass 15670 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( ( invr `  (Scalar `  W ) ) `  r ) ( .r
`  (Scalar `  W )
) r ) ( .s `  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
5820, 56, 19, 21, 57syl13anc 1184 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
591, 4, 7, 50lmodvs1 15674 . . . . . . 7  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
6020, 21, 59syl2anc 642 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  =  Y )
6154, 58, 603eqtr3d 2336 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  =  Y )
6235snssd 3776 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { X }  C_  V
)
6328, 62unssd 3364 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  V
)
641, 2, 3lspcl 15749 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( N `  ( A  u.  { X } ) )  e.  S )
6520, 63, 64syl2anc 642 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { X } ) )  e.  S )
661, 4, 7, 5lmodvscl 15660 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( r ( .s
`  W ) Y )  e.  V )
6720, 19, 21, 66syl3anc 1182 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  V )
68 eqid 2296 . . . . . . . . 9  |-  ( -g `  W )  =  (
-g `  W )
691, 6, 68lmodvpncan 15694 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X ) ( -g `  W
) X )  =  ( r ( .s
`  W ) Y ) )
7020, 67, 35, 69syl3anc 1182 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  =  ( r ( .s `  W ) Y ) )
711, 6lmodcom 15687 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( r ( .s
`  W ) Y ) ( +g  `  W
) X )  =  ( X ( +g  `  W ) ( r ( .s `  W
) Y ) ) )
7220, 67, 35, 71syl3anc 1182 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  =  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) ) )
73 ssun1 3351 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  { X } )
7473a1i 10 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  ( A  u.  { X } ) )
751, 3lspss 15757 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V  /\  A  C_  ( A  u.  { X }
) )  ->  ( N `  A )  C_  ( N `  ( A  u.  { X } ) ) )
7620, 63, 74, 75syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  A
)  C_  ( N `  ( A  u.  { X } ) ) )
7776, 42sseldd 3194 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
7872, 77eqeltrd 2370 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
791, 3lspssid 15758 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( A  u.  { X } ) 
C_  ( N `  ( A  u.  { X } ) ) )
8020, 63, 79syl2anc 642 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  ( N `  ( A  u.  { X } ) ) )
81 snidg 3678 . . . . . . . . . 10  |-  ( X  e.  V  ->  X  e.  { X } )
82 elun2 3356 . . . . . . . . . 10  |-  ( X  e.  { X }  ->  X  e.  ( A  u.  { X }
) )
8335, 81, 823syl 18 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( A  u.  { X } ) )
8480, 83sseldd 3194 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( N `  ( A  u.  { X } ) ) )
8568, 2lssvsubcl 15717 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) )  /\  X  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( r ( .s
`  W ) Y ) ( +g  `  W
) X ) (
-g `  W ) X )  e.  ( N `  ( A  u.  { X }
) ) )
8620, 65, 78, 84, 85syl22anc 1183 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
8770, 86eqeltrrd 2371 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  ( N `
 ( A  u.  { X } ) ) )
884, 7, 5, 2lssvscl 15728 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  (
r ( .s `  W ) Y )  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( invr `  (Scalar `  W
) ) `  r
) ( .s `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
8920, 65, 56, 87, 88syl22anc 1183 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
9061, 89eqeltrrd 2371 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  ( N `  ( A  u.  { X } ) ) )
9190expr 598 . . 3  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) ) )
9291rexlimdva 2680 . 2  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  ( E. r  e.  ( Base `  (Scalar `  W ) ) ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
)  ->  Y  e.  ( N `  ( A  u.  { X }
) ) ) )
9316, 92mpd 14 1  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560    \ cdif 3162    u. cun 3163    C_ wss 3165   {csn 3653   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   .rcmulr 13225  Scalarcsca 13227   .scvsca 13228   0gc0g 13416   -gcsg 14381   1rcur 15355   invrcinvr 15469   DivRingcdr 15528   LModclmod 15643   LSubSpclss 15705   LSpanclspn 15744   LVecclvec 15871
This theorem is referenced by:  lssacsex  15913  lspsnat  15914  lsppratlem1  15916  lsppratlem3  15918  lsppratlem4  15919  lbsextlem4  15930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872
  Copyright terms: Public domain W3C validator