MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssp Unicode version

Theorem lspssp 16027
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspssp.s  |-  S  =  ( LSubSp `  W )
lspssp.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspssp  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  T  C_  U )  ->  ( N `  T )  C_  U )

Proof of Theorem lspssp
StepHypRef Expression
1 eqid 2412 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 lspssp.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssss 15976 . . 3  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
4 lspssp.n . . . 4  |-  N  =  ( LSpan `  W )
51, 4lspss 16023 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  ( Base `  W
)  /\  T  C_  U
)  ->  ( N `  T )  C_  ( N `  U )
)
63, 5syl3an2 1218 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  T  C_  U )  ->  ( N `  T )  C_  ( N `  U
) )
72, 4lspid 16021 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
873adant3 977 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  T  C_  U )  ->  ( N `  U )  =  U )
96, 8sseqtrd 3352 1  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  T  C_  U )  ->  ( N `  T )  C_  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3288   ` cfv 5421   Basecbs 13432   LModclmod 15913   LSubSpclss 15971   LSpanclspn 16010
This theorem is referenced by:  lspsnss  16029  lspprss  16031  lsp0  16048  lsslsp  16054  lmhmlsp  16088  lspextmo  16095  lsmsp  16121  lsppratlem3  16184  lsppratlem4  16185  islbs3  16190  rspssp  16260  ocvlsp  16866  frlmsslsp  27124
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-riota 6516  df-0g 13690  df-mnd 14653  df-grp 14775  df-lmod 15915  df-lss 15972  df-lsp 16011
  Copyright terms: Public domain W3C validator